Understanding Map Projections

Melita Kennedy
Contents

CHAPTER 1 GEOGRAPHIC COORDINATE SYSTEMS 7
Geographic coordinate systems ... 8
Spheroids and spheres .. 10
Datums .. 12
North American datums ... 13

CHAPTER 2 PROJECTED COORDINATE SYSTEMS 15
Projected coordinate systems ... 16
What is a map projection? ... 17
Projection types ... 19
Other projections ... 25

CHAPTER 3 GEOGRAPHIC TRANSFORMATIONS 27
Geographic transformation methods ... 28
Equation-based methods ... 29
Grid-based methods .. 31

CHAPTER 4 SUPPORTED MAP PROJECTIONS 33
Aitoff .. 34
Alaska Grid .. 35
Alaska Series E ... 36
Albers Equal Area Conic ... 37
Azimuthal Equidistant ... 39
Behrmann Equal Area Cylindrical .. 41
Bipolar Oblique Conformal Conic .. 42
Bonne .. 43
Cassini-Soldner .. 44
Chamberlin Trimetric ... 46
<table>
<thead>
<tr>
<th>Projection Type</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Craster Parabolic</td>
<td>47</td>
</tr>
<tr>
<td>Cylindrical Equal Area</td>
<td>48</td>
</tr>
<tr>
<td>Double Stereographic</td>
<td>50</td>
</tr>
<tr>
<td>Eckert I</td>
<td>51</td>
</tr>
<tr>
<td>Eckert II</td>
<td>52</td>
</tr>
<tr>
<td>Eckert III</td>
<td>53</td>
</tr>
<tr>
<td>Eckert IV</td>
<td>54</td>
</tr>
<tr>
<td>Eckert V</td>
<td>55</td>
</tr>
<tr>
<td>Eckert VI</td>
<td>56</td>
</tr>
<tr>
<td>Equidistant Conic</td>
<td>57</td>
</tr>
<tr>
<td>Equidistant Cylindrical</td>
<td>59</td>
</tr>
<tr>
<td>Equirectangular</td>
<td>61</td>
</tr>
<tr>
<td>Gall’s Stereographic</td>
<td>62</td>
</tr>
<tr>
<td>Gauss–Krüger</td>
<td>63</td>
</tr>
<tr>
<td>Geocentric Coordinate System</td>
<td>64</td>
</tr>
<tr>
<td>Geographic Coordinate System</td>
<td>65</td>
</tr>
<tr>
<td>Gnomonic</td>
<td>66</td>
</tr>
<tr>
<td>Great Britain National Grid</td>
<td>68</td>
</tr>
<tr>
<td>Hammer-Aitoff</td>
<td>69</td>
</tr>
<tr>
<td>Hotine Oblique Mercator</td>
<td>70</td>
</tr>
<tr>
<td>Lambert Azimuthal Equal Area</td>
<td>72</td>
</tr>
<tr>
<td>Lambert Conformal Conic</td>
<td>74</td>
</tr>
<tr>
<td>Local Cartesian Projection</td>
<td>76</td>
</tr>
<tr>
<td>Loximuthal</td>
<td>77</td>
</tr>
<tr>
<td>McBryde–Thomas Flat-Polar Quartic</td>
<td>78</td>
</tr>
<tr>
<td>Mercator</td>
<td>79</td>
</tr>
<tr>
<td>Miller Cylindrical</td>
<td>81</td>
</tr>
<tr>
<td>Mollweide</td>
<td>82</td>
</tr>
<tr>
<td>New Zealand National Grid</td>
<td>83</td>
</tr>
<tr>
<td>Orthographic</td>
<td>84</td>
</tr>
<tr>
<td>Perspective</td>
<td>85</td>
</tr>
<tr>
<td>Peters</td>
<td>86</td>
</tr>
<tr>
<td>Plate Carrée</td>
<td>87</td>
</tr>
<tr>
<td>Polar Stereographic</td>
<td>88</td>
</tr>
<tr>
<td>Polyconic</td>
<td>89</td>
</tr>
<tr>
<td>Quartic Authalic</td>
<td>90</td>
</tr>
<tr>
<td>Rectified Skewed Orthomorphic</td>
<td>91</td>
</tr>
</tbody>
</table>
In this chapter you’ll learn about longitude and latitude. You’ll also learn about the parts that comprise a geographic coordinate system including

- Spheres and spheroids
- Datums
- Prime meridians
A geographic coordinate system (GCS) defines locations on the earth using a three-dimensional spherical surface. A GCS is often incorrectly called a datum, but a datum is only one part of a GCS. A GCS includes an angular unit of measure, a prime meridian, and a datum (based on a spheroid).

A feature is referenced by its longitude and latitude values. Longitude and latitude are angles measured from the earth’s center to a point on the earth’s surface. The angles are measured in degrees (or in grads).

The world as a globe showing the longitude and latitude values.

In the spherical system, ‘horizontal’ or east–west lines are lines of equal latitude or parallels. ‘Vertical’ or north–south lines are lines of equal longitude or meridians. These lines encompass the globe and form a gridded network called a graticule.

The line of latitude midway between the poles, the horizontal axis, is called the equator and defines the line of zero latitude. The vertical axis, which defines the line of zero longitude, is called the prime meridian. For most geographic coordinate systems, the prime meridian is the longitude that passes through Greenwich, England. Other countries use as prime meridians longitude lines that pass through Bern, Bogota, and Paris.

Where the equator and prime meridian intersect defines the origin (0,0). The globe is then divided into four geographical quadrants based on compass bearings from the origin. Above and below the equator are north and south, and to the left and right of the prime meridian are west and east.

Latitude and longitude values are traditionally measured in decimal degrees or in degrees, minutes, and seconds (DMS). Latitudes are measured relative to the equator and range from -90° at the South Pole to +90° at the North Pole. Longitude is measured relative to the prime meridian positively, up to 180°, when traveling east and measured negatively up to -180°, when traveling west. If the prime meridian is at Greenwich, then Australia, which is south of the equator and east of Greenwich, has positive longitude values and negative latitude values.

Although longitude and latitude can locate exact positions on the surface of the globe, they are not uniform units of measure. Only along the equator does the distance represented by one degree of
longitude approximate the distance represented by one degree of latitude. This is because the equator is the only parallel as large as a meridian. (Circles with the same radius as the spherical earth are called great circles. All meridians and the equator are great circles.)

Above and below the equator, the circles defining the parallels of latitude get gradually smaller until they become a single point at the North and South Poles where the meridians converge. As the meridians converge toward the poles, the distance represented by one degree of longitude decreases to zero. On the Clarke 1866 spheroid, one degree of longitude at the equator equals 111.321 km, while at 60° latitude it is only 55.802 km. Since degrees of latitude and longitude don’t have a standard length, you can’t measure distances or areas accurately or display the data easily on a flat map or computer screen.
The shape and size of a geographic coordinate system’s surface is defined by a sphere or spheroid. Although the earth is best represented by a spheroid, the earth is sometimes treated as a sphere to make mathematical calculations easier. The assumption that the earth is a sphere is possible for small-scale maps, those smaller than 1:5,000,000. At this scale, the difference between a sphere and a spheroid is not detectable on a map. However, to maintain accuracy for larger-scale maps (scales of 1:1,000,000 or larger), a spheroid is necessary to represent the shape of the earth.

A sphere is based on a circle, while a spheroid (or ellipsoid) is based on an ellipse. The shape of an ellipse is defined by two radii. The longer radius is called the semimajor axis, and the shorter radius is called the semiminor axis.

The major and minor axes of an ellipse. Rotating the ellipse around the semiminor axis creates a spheroid.

The semimajor axis and semiminor axis of a spheroid.

A spheroid is defined by either the semimajor axis, \(a \), and the semiminor axis, \(b \), or by \(a \) and the flattening. The flattening is the difference in length between the two axes expressed as a fraction or a decimal. The flattening, \(f \), is

\[
f = \frac{a - b}{a}
\]

The flattening is a small value, so usually the quantity \(1/f \) is used instead. Sample values are

\[
a = 6378137.0 \text{ meters} \\
1/f = 298.257223563
\]

The flattening ranges between zero and one. A flattening value of zero means the two axes are equal, resulting in a sphere. The flattening of the earth is approximately 0.003353.

Another quantity is the square of the eccentricity, \(e \), that, like the flattening, describes the shape of a spheroid.

\[
e^2 = \frac{a^2 - b^2}{a^2}
\]

DEFINING DIFFERENT SPHEROIDS FOR ACCURATE MAPPING

The earth has been surveyed many times to better understand its surface features and their peculiar irregularities. The surveys have resulted in many spheroids that represent the earth. Generally, a spheroid is chosen to fit one country or a particular area. A spheroid that best fits one region is not
necessarily the same one that fits another region. Until recently, North American data used a spheroid determined by Clarke in 1866. The semimajor axis of the Clarke 1866 spheroid is 6,378,206.4 meters, and the semiminor axis is 6,356,583.8 meters.

Because of gravitational and surface feature variations, the earth is neither a perfect sphere nor a perfect spheroid. Satellite technology has revealed several elliptical deviations; for example, the South Pole is closer to the equator than the North Pole. Satellite-determined spheroids are replacing the older ground-measured spheroids. For example, the new standard spheroid for North America is GRS 1980, whose radii are 6,378,137.0 and 6,356,752.31414 meters.

Because changing a coordinate system’s spheroid changes all previously measured values, many organizations don’t switch to newer (and more accurate) spheroids.
DATUMS

While a spheroid approximates the shape of the earth, a datum defines the position of the spheroid relative to the center of the earth. A datum provides a frame of reference for measuring locations on the surface of the earth. It defines the origin and orientation of latitude and longitude lines.

Whenever you change the datum, or more correctly, the geographic coordinate system, the coordinate values of your data will change. Here’s the coordinates in DMS of a control point in Redlands on NAD 1983.

-117 12 57.75961 34 01 43.77884

Here’s the same point on NAD 1927.

-117 12 54.61539 34 01 43.72995

The longitude value differs by about a second while the latitude value is around 500th of a second.

In the last 15 years, satellite data has provided geodesists with new measurements to define the best earth-fitting spheroid, which relates coordinates to the earth’s center of mass. An earth-centered, or geocentric, datum uses the earth’s center of mass as the origin. The most recently developed and widely used datum is the World Geodetic System of 1984 (WGS84). It serves as the framework for locational measurement worldwide.

A local datum aligns its spheroid to closely fit the earth’s surface in a particular area. A point on the surface of the spheroid is matched to a particular position on the surface of the earth. This point is known as the ‘origin point’ of the datum. The coordinates of the origin point are fixed, and all other points are calculated from it. The coordinate system origin of a local datum is not at the center of the earth. The center of the spheroid of a local datum is offset from the earth’s center. The North American Datum of 1927 (NAD27) and the European Datum of 1950 are local datums. NAD27 is designed to fit North America reasonably well, while ED50 was created for use in Europe. A local datum is not suited for use outside the area for which it was designed.
There are two horizontal datums used almost exclusively in North America. These are the North American Datum of 1927 (NAD 1927) and the North American Datum of 1983 (NAD 1983).

NAD 1927

The North American Datum of 1927 uses the Clarke 1866 spheroid to represent the shape of the earth. The origin of this datum is a point on the earth referred to as Meades Ranch in Kansas. Many NAD 1927 control points were calculated from observations taken in the 1800s. These calculations were done manually and in sections over many years. Therefore, errors varied from station to station.

NAD 1983

Many technological advances in surveying and geodesy since the establishment of NAD 1927—electronic theodolites, GPS satellites, Very Long Baseline Interferometry, and Doppler systems—revealed weaknesses in the existing network of control points. Differences became particularly noticeable when linking existing control with newly established surveys. The establishment of a new datum would allow for a single datum to cover consistently North America and surrounding areas.

The North American Datum of 1983 is based upon both earth and satellite observations, using the GRS80 spheroid. The origin for this datum is the earth’s center of mass. This affects the surface location of all longitude-latitude values enough to cause locations of previous control points in North America to shift, sometimes as much as 500 feet. A 10 year multinational effort tied together a network of control points for the United States, Canada, Mexico, Greenland, Central America, and the Caribbean.

Because NAD 1983 is an earth-centered coordinate system, it is compatible with global positioning system (GPS) data. The raw GPS data is actually reported in the World Geodetic System 1984 (WGS 1984) coordinate system.

HARN OR HPGN

There is an ongoing effort at the state level to readjust the NAD 1983 datum to a higher level of accuracy using state-of-the-art surveying techniques that were not widely available when the NAD 1983 datum was being developed. This project, known as the High Accuracy Reference Network (HARN), or High Precision GPS Network (HPGN), is a cooperative project between the National Geodetic Survey and the individual states.

Currently all states have been resurveyed, but not all of the data has been released to the public yet. Thirty-three states are published as of November 1999.
Projected coordinate systems are any coordinate system designed for a flat surface such as a printed map or a computer screen. Topics in this chapter include

- Characteristics and types of map projection
- Different parameter types
- Customizing a map projection through its parameters
- Common projected coordinate systems
A projected coordinate system is defined on a flat, two-dimensional surface. A projected coordinate system, unlike a geographic one, has the advantage that lengths, angles, and areas are constant across the two dimensions. This is not true when working in a geographic coordinate system. A projected coordinate system is always based on a geographic coordinate system that can use a sphere or spheroid.

In a projected coordinate system, locations are identified by x,y coordinates on a grid, with the origin at the center of the grid. Each position has two values referencing it to that central location. One specifies its horizontal position and the other its vertical position. The two values are called the x-coordinate and y-coordinate. Using this notation, the coordinates at the origin are $x = 0$ and $y = 0$.

On a gridded network of equally spaced horizontal and vertical lines, the horizontal line in the center is called the x-axis and the central vertical line is called the y-axis. Units are consistent and equally spaced across the full range of x and y. Horizontal lines above the origin and vertical lines to the right of the origin have positive values; those below or to the left are negative. The four quadrants represent the four possible combinations of positive and negative x- and y-coordinates.

<table>
<thead>
<tr>
<th>$X<0$</th>
<th>$X>0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Y>0$</td>
<td>$Y>0$</td>
</tr>
</tbody>
</table>

The signs of x- and y-coordinates in a projected coordinate system.
What is a map projection?

Whether you treat the earth as a sphere or as a spheroid, you must transform its three-dimensional surface to create a flat map sheet. This mathematical transformation is commonly referred to as a map projection. One easy way to understand how map projections alter spatial properties is to visualize shining a light through the earth onto a surface, called the projection surface.

A spheroid can’t be flattened to a plane any easier than flattening a piece of orange peel—it will rip. Representing the earth’s surface in two dimensions causes distortion in the shape, area, distance, or direction of the data.

A map projection uses mathematical formulas to relate spherical coordinates on the globe to flat, planar coordinates.

\[(\lambda, \varphi) \to (x, y)\]

Different projections cause different types of distortions. Some projections are designed to minimize the distortion of one or two of the data’s characteristics. A projection could maintain the area of a feature but alter its shape. In the above graphic, data near the poles is stretched. The diagram on the next page shows how three-dimensional features are compressed to fit onto a flat surface.

The graticule of a geographic coordinate system is projected onto a cylindrical projection surface.
Map projections are designed for specific purposes. A map projection might be used for large-scale data in a limited area, while another is used for a small-scale map of the world. Map projections designed for small-scale data are usually based on spherical rather than spheroidal geographic coordinate systems.

Conformal projections

Conformal projections preserve local shape. Graticule lines on the globe are perpendicular. To preserve individual angles describing the spatial relationships, a conformal projection must show graticule lines intersecting at 90-degree angles on the map. This is accomplished by maintaining all angles. The drawback is that the area enclosed by a series of arcs may be greatly distorted in the process. No map projection can preserve shapes of larger regions.

Equal area projections

Equal area projections preserve the area of displayed features. To do this, the other properties of shape, angle, and scale are distorted. In equal area projections, the meridians and parallels may not intersect at right angles. In some instances, especially maps of smaller regions, shapes are not obviously distorted, and distinguishing an equal area projection from a conformal projection may prove difficult unless documented or measured.

Equidistant projections

Equidistant maps preserve the distances between certain points. Scale is not maintained correctly by any projection throughout an entire map; however, there are, in most cases, one or more lines on a map along which scale is maintained correctly. Most projections have one or more lines for which the length of the line on a map is the same length (at map scale) as the same line on the globe, regardless of whether it is a great or small circle or straight or curved. Such distances are said to be true. For example, in the Sinusoidal projection, the equator and all parallels are their true lengths. In other equidistant projections, the equator and all meridians are true. Still others (e.g., Two-Point Equidistant) show true scale between one or two points and every other point on the map. Keep in mind that no projection is equidistant to and from all points on a map.

True-direction projections

The shortest route between two points on a curved surface such as the earth is along the spherical equivalent of a straight line on a flat surface. That is the great circle on which the two points lie. True-direction or *azimuthal* projections maintain some of the great circle arcs, giving the directions or azimuths of all points on the map correctly with respect to the center. Some true-direction projections are also conformal, equal area, or equidistant.
Because maps are flat, some of the simplest projections are made onto geometric shapes that can be flattened without stretching their surfaces. Common examples are cones, cylinders, and planes. A mathematical expression that systematically projects locations from the surface of a spheroid to representative positions on a planar surface is called a map projection.

The first step in projecting from one surface to another is to create one or more points of contact. Each contact is called a point (or line) of tangency. As illustrated in the section below about 'Planar projections', a planar projection is tangential to the globe at one point. Tangential cones and cylinders touch the globe along a line. If the projection surface intersects the globe instead of merely touching its surface, the resulting projection is a secant rather than a tangent case. Whether the contact is tangent or secant, the contact point or lines are significant because they define locations of zero distortion. Lines of true scale are often referred to as standard lines. In general, distortion increases with the distance from the point of contact.

Many common map projections are classified according to the projection surface used: conic, cylindrical, and planar.
Conic projections

The most simple conic projection is tangent to the globe along a line of latitude. This line is called the standard parallel. The meridians are projected onto the conical surface, meeting at the apex, or point, of the cone. Parallel lines of latitude are projected onto the cone as rings. The cone is then 'cut' along any meridian to produce the final conic projection, which has straight converging lines for meridians and concentric circular arcs for parallels. The meridian opposite the cut line becomes the central meridian.

In general, distortion increases away from the standard parallel. Thus, cutting off the top of the cone produces a more accurate projection. This is accomplished by not using the polar region of the projected data. Conic projections are used for mid-latitude zones that have an east-to-west orientation.

Somewhat more complex conic projections contact the global surface at two locations. These projections are called secant conic projections and are defined by two standard parallels. It is also possible to define a secant projection by one standard parallel and a scale factor. The distortion pattern for secant projections is different between the standard parallels than beyond them. Generally, a secant projection has less overall distortion than a tangent case. On still more complex conic projections, the axis of the cone does not line up with the polar axis of the globe. These are called oblique.

The representation of geographic features depends on the spacing of the parallels. When equally spaced, the projection is equidistant in the north-south direction but neither conformal nor equal area such as the Equidistant Conic projection. For small areas, the overall distortion is minimal. On the Lambert Conic Conformal projection, the central parallels are spaced more closely than the parallels near the border, and small geographic shapes are maintained for both small-scale and large-scale maps. Finally, on the Albers Equal Area Conic projection...
Projection, the parallels near the northern and southern edges are closer together than the central parallels, and the projection displays equivalent areas.
Cylindrical projections can also have tangent or secant cases. The Mercator projection is one of the most common cylindrical projections, and the equator is usually its line of tangency. Meridians are geometrically projected onto the cylindrical surface, and parallels are mathematically projected, producing gratricular angles of 90 degrees. The cylinder is ‘cut’ along any meridian to produce the final cylindrical projection. The meridians are equally spaced, while the spacing between parallel lines of latitude increases toward the poles. This projection is conformal and displays true direction along straight lines. Rhumb lines, lines of constant bearing, but not most great circles, are straight lines on a Mercator projection.

For more complex cylindrical projections the cylinder is rotated, thus changing the tangent or secant lines. Transverse cylindrical projections such as the Transverse Mercator use a meridian as the tangential contact or lines parallel to meridians as lines of secancy. The standard lines then run north and south, along which the scale is true. Oblique cylinders are rotated around a great circle line located anywhere between the equator and the meridians. In these more complex projections, most meridians and lines of latitude are no longer straight.

In all cylindrical projections, the line of tangency or lines of secancy have no distortion and thus are lines of equidistance. Other geographical properties vary according to the specific projection.
Planar projections

Planar projections project map data onto a flat surface touching the globe. A planar projection is also known as an azimuthal projection or a zenithal projection. This type of projection is usually tangent to the globe at one point but may be secant. The point of contact may be the North Pole, the South Pole, a point on the equator, or any point in between. This point specifies the aspect and is the focus of the projection. The focus is identified by a central longitude and a central latitude. Possible aspects are polar, equatorial, and oblique.

Polar aspects are the simplest form. Parallels of latitude are concentric circles centered on the pole, and meridians are straight lines that intersect at the pole with their true angles of orientation. In other aspects, planar projections will have graticular angles of 90 degrees at the focus. Directions from the focus are accurate.

Great circles passing through the focus are represented by straight lines; thus the shortest distance from the center to any other point on the map is a straight line. Patterns of area and shape distortion are circular about the focus. For this reason, azimuthal projections accommodate circular regions better than rectangular regions. Planar projections are used most often to map polar regions.

Some planar projections view surface data from a specific point in space. The point of view determines how the spherical data is projected onto the flat surface. The perspective from which all locations are viewed varies between the different azimuthal projections. Perspective points may be the center of the earth, a surface point directly opposite from the focus, or a point external to the globe, as if seen from a satellite or another planet.
Azimuthal projections are classified in part by the focus and, if applicable, by the perspective point. The graphic below compares three planar projections with polar aspects but different perspectives. The Gnomonic projection views the surface data from the center of the earth, whereas the Stereographic projection views it from pole to pole. The Orthographic projection views the earth from an infinite point, as if viewed from deep space. Note how the differences in perspective determine the amount of distortion toward the equator.
The projections discussed previously are conceptually created by projecting from one geometric shape (a sphere) onto another (a cone, cylinder, or plane). Many projections are not related as easily to one of these three surfaces.

Modified projections are altered versions of other projections (e.g., the Space Oblique Mercator is a modification of the Mercator projection). These modifications are made to reduce distortion, often by including additional standard lines or changing the distortion pattern.

Pseudo projections have some of the characteristics of another class of projection. For example, the Sinusoidal is called a pseudocylindrical projection because all lines of latitude are straight and parallel and all meridians are equally spaced. However, it is not truly a cylindrical projection because all meridians except the central meridian are curved. This results in a map of the earth having an oval shape instead of a rectangular shape.

Other projections are assigned to special groups such as circular, star, and so on.
This chapter discusses the various datum transformation methods including:

- Geographic translation
- Coordinate Frame and Position Vector
- Molodensky and Abridged Molodensky
- NADCON and HARN
- NTv2
Moving your data between coordinate systems sometimes includes transforming between the geographic coordinate systems.

Because the geographic coordinate systems contain datums that are based on spheroids, a geographic transformation also changes the underlying spheroid. There are several methods for transforming between datums, which have different levels of accuracy and ranges.

A geographic transformation always converts geographic (longitude–latitude) coordinates. Some methods convert the geographic coordinates to geocentric (X, Y, Z) coordinates, transform the X, Y, Z coordinates, and convert the new values to geographic coordinates.

Other methods use a grid of differences and convert the longitude–latitude values directly.
Geocentric translations

The simplest datum transformation method is a geocentric, or three-parameter, transformation. The geocentric transformation models the differences between two datums in the X, Y, Z coordinate system. One datum is defined with its center at 0, 0, 0. The center of the other datum is defined to be at some distance (ΔX, ΔY, ΔZ) in meters away.

Usually the transformation parameters are defined as going ‘from’ a local datum ‘to’ WGS84 or to another geocentric datum.

\[
\begin{bmatrix} X \\ Y \\ Z_{\text{new}} \end{bmatrix} = \begin{bmatrix} \Delta X \\ \Delta Y \\ \Delta Z \end{bmatrix} + \begin{bmatrix} X \\ Y \\ Z_{\text{original}} \end{bmatrix}
\]

Seven parameter methods

A more complex and accurate datum transformation is possible by adding four more parameters to a geocentric transformation. The seven parameters are three linear shifts (ΔX, ΔY, ΔZ), three angular rotations around each axis (r_x, r_y, r_z), and a scale factor (s).

\[
\begin{bmatrix} X \\ Y \\ Z_{\text{new}} \end{bmatrix} = \begin{bmatrix} \Delta X \\ \Delta Y \\ \Delta Z \end{bmatrix} + (1 + s) \begin{bmatrix} 1 & r_z & -r_y \\ -r_z & 1 & r_x \\ r_y & -r_x & 1 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z_{\text{original}} \end{bmatrix}
\]

The rotation values are given in decimal seconds, while the scale factor is in parts per million (ppm). The rotations are defined in two different ways.

Without getting into a lot of mathematics, it’s possible to define the rotation angles as positive either clockwise or counterclockwise as you look toward the origin of the XYZ systems.

The Coordinate Frame (or Bursa-Wolf) definition of the rotation values.

The above equation is the way that the United States and Australia define the equations and is called the ‘Coordinate Frame Rotation’ transformation. The rotations are positive counterclockwise. Europe uses a different convention called the ‘Position Vector’ transformation. Both methods are sometimes referred to as the Bursa-Wolf method. In the Projection Engine, the Coordinate Frame and Bursa-Wolf methods are the same. Both Coordinate Frame and Position Vector methods are supported, and it is easy to convert transformation values from one method to the other simply by changing the signs of the three rotation values. For example, the parameters to convert from the WGS72 datum to the WGS84 datum with the Coordinate Frame method are:

(0.0, 0.0, 4.5, 0.0, 0.0, -0.554, 0.227)

To use the same parameters with the Position Vector method, change the sign of the rotation so the new parameters are:

(0.0, 0.0, 4.5, 0.0, 0.0, +0.554, 0.227)

Unless explicitly stated, it’s impossible to tell from the parameters alone which convention is being used. If you use the wrong method, your results can return inaccurate coordinates. The only way to determine how the parameters are defined is by
checking a control point whose coordinates are known in the two systems.

Molodensky method

The Molodensky method converts directly between two geographic coordinate systems without actually converting to an X, Y, Z system. The Molodensky method requires three shifts \((\Delta X, \Delta Y, \Delta Z)\) and the differences between the semimajor axes \((\Delta a)\) and the flattenings \((\Delta f)\) of the two spheroids. The Projection Engine automatically calculates the spheroid differences according to the datums involved.

\[(M + h)\Delta \varphi = -\sin \varphi \cos \lambda \Delta X - \sin \varphi \sin \lambda \Delta Y + \cos \varphi \Delta Z + \frac{e^2 \sin \varphi \cos \varphi}{(1 - e^2 \sin^2 \varphi)^{1/2}} \Delta a + \sin \varphi \cos \varphi(M \frac{a}{b} + N \frac{b}{a}) \Delta f\]

\[(N + h) \cos \varphi \Delta \lambda = -\sin \lambda \Delta X + \cos \lambda \Delta Y\]

\[\Delta h = \cos \varphi \cos \lambda \Delta X + \cos \varphi \sin \lambda \Delta Y + \sin \varphi \Delta Z - (1 - e^2 \sin^2 \varphi)^{1/2} \Delta a + \frac{a(1 - f)}{(1 - e^2 \sin^2 \varphi)^{1/2}} \sin^2 \varphi \Delta f\]

\(h\) ellipsoid height
\(\phi\) latitude
\(\lambda\) longitude
\(e\) eccentricity of the spheroid

M and N are the meridian and prime vertical radii of curvatures. The equations for M and N are

\[M = \frac{a(1 - e^2)}{(1 - e^2 \sin^2 \varphi)^{3/2}}\]

\[N = \frac{a}{(1 - e^2 \sin^2 \varphi)^{1/2}}\]

The Molodensky method returns in decimal seconds the amounts to add to the latitude and longitude. The amounts are added automatically by the Projection Engine.

Abridged Molodensky method

The Abridged Molodensky method is a simplified and less accurate version of the Molodensky method.

\[M \Delta \varphi = -\sin \varphi \cos \lambda \Delta X - \sin \varphi \sin \lambda \Delta Y + \cos \varphi \Delta Z + (a \Delta f + f \Delta a) \cdot 2 \sin \varphi \cos \varphi\]

\[N \cos \varphi \Delta \lambda = -\sin \lambda \Delta X + \cos \lambda \Delta Y\]

\[\Delta h = \cos \varphi \cos \lambda \Delta X + \cos \varphi \sin \lambda \Delta Y + \sin \varphi \Delta Z + (a \Delta f + f \Delta a) \sin^2 \varphi - \Delta a\]
NADCON and HARN methods

The United States uses a grid-based method to convert between geographic coordinate systems. Grid-based methods allow you to model the differences between the systems and are potentially the most accurate method. The area of interest is divided into cells. The National Geodetic Survey publishes grids to convert between NAD 1927 and other older geographic coordinate systems and NAD 1983. We group these transformations into the NADCON method. The main NADCON grid converts the contiguous 48 states, Alaska, Puerto Rico, and the Virgin Islands between NAD 1927 and NAD 1983. The other NADCON grids convert older geographic coordinate systems for the

- Hawaiian Islands
- Puerto Rico and the Virgin Islands
- St. George Island, Alaska
- St. Lawrence Island, Alaska
- St. Paul Island, Alaska

to NAD 1983. The accuracy is around 0.15 meters for the contiguous states, 0.50 for Alaska, 0.20 for Hawaii, and 0.05 for Puerto Rico and the Virgin Islands. Accuracies can vary depending on how good the geodetic data in the area was when the grids were computed (NADCON, 1999).

New surveying and satellite measuring techniques have allowed NGS and the states to calculate very accurate control grid networks. These grids are called HARN files. About two-thirds of the states have HARN grids. HARN transformations have an accuracy around 0.05 meters (NADCON, 1999).

The difference values in decimal seconds are stored in two files: one for longitude and the other for latitude. A bilinear interpolation is used to exactly calculate the difference between the two geographic coordinate systems at a point. The grids are binary files, but a program, nadgrd, from the NGS allows you to convert the grids to an ASCII format. Shown at the bottom of the page is the header and first ‘row’ of the CSHPGN.LOA file. This is the longitude grid for Southern California. The format of the first row of numbers is, in order, the number of columns, the number of rows, unknown, minimum longitude, cell size, minimum latitude, cell size, and unknown.

The next 37 values (in this case) are the longitude shifts from -122° to -113° at 32° N.

<table>
<thead>
<tr>
<th>NADCON EXTRACTED REGION</th>
<th>NADGRD</th>
</tr>
</thead>
<tbody>
<tr>
<td>37 21 1 -122.00000</td>
<td>.25000 32.00000 .25000 .00000</td>
</tr>
<tr>
<td>.007383</td>
<td>.004806 .002222 -.000347 -.002868 -.005296</td>
</tr>
<tr>
<td>-.007570</td>
<td>-.009609 -.011305 -.012517 -.013093 -.012901</td>
</tr>
<tr>
<td>-.011867</td>
<td>-.009886 -.007359 -.004301 -.001389 .001164</td>
</tr>
<tr>
<td>.003282</td>
<td>.004814 .005503 .005361 .004420 .002580</td>
</tr>
<tr>
<td>.000053</td>
<td>-.002869 -.006091 -.009842 -.014240 -.019217</td>
</tr>
<tr>
<td>-.025104</td>
<td>-.035027 -.050254 -.072636 -.087238 -.099279</td>
</tr>
<tr>
<td>-.110968</td>
<td></td>
</tr>
</tbody>
</table>

A portion of a grid file used for a HARN transformation.
National Transformation, version 2

Like the United States, Canada uses a grid-based method to convert between NAD 1927 and NAD 1983. The National Transformation version 2 (NTv2) method is quite similar to NADCON. A set of binary files contains the differences between the two geographic coordinate systems. A bilinear interpolation is used to calculate the exact values for a point.

Unlike NADCON, which can only use one grid at a time, NTv2 is designed to check multiple grids for the most accurate shift information. A set of low-density base grids exists for Canada. Certain areas such as a city have high-density local subgrids that overlay portions of the base or parent grids. If a point is within one of the high-density grids, NTv2 will use it. Otherwise the point ‘falls through’ to the low-density grid.

![Diagram showing grid structure](image)

A higher density subgrid with four cells overlaying a lower density base grid, also with four cells.

If a point falls in the lower-left part of the above picture between the stars, the shifts are calculated with the higher density subgrid. A point whose coordinates are anywhere else will have its shifts calculated with the lower density base grid. The software automatically calculates which base or subgrid to use.
A map projection converts data from the round earth onto a flat plane. Each map projection is designed for a specific purpose and distorts the data differently. This chapter will describe each projection including:

- Method
- Linear graticules
- Limitations
- Uses and applications
- Parameters
Aitoff

The central meridian is 0°.

DESCRIPTION
A compromise projection used for world maps and developed in 1889.

PROJECTION METHOD
Modified azimuthal. Meridians are equally spaced and concave toward the central meridian. The central meridian is a straight line and half the length of the equator. Parallels are equally spaced curves, concave toward the poles.

LINEAR GRATICULES
The equator and the central meridian.

PROPERTIES

Shape
Shape distortion is moderate.

Area
Moderate distortion.

Direction
Generally distorted.

Distance
The equator and central meridian are at true scale.

LIMITATIONS
Neither conformal nor equal area. Useful only for world maps.

USES AND APPLICATIONS
Developed for use in general world maps.

Used for the Winkel Tripel projection.

PROJECTION PARAMETERS

ArcInfo™: ARC, ARC PLOT™, ARCEdit™, ArcToolbox™
Supported on a sphere only.

:PROJECTION AITOFF
:PARAMETERS
Radius of the sphere of reference:
Longitude of central meridian:
False easting (meters):
False northing (meters):
Alaska Grid

DESCRIPTION
This projection was developed to provide a conformal map of Alaska with less scale distortion than other conformal projections. A set of mathematical formulas allows the definition of a conformal transformation between two surfaces (Snyder, 1987).

PROJECTION METHOD
Modified planar. This is a sixth-order equation modification of an oblique Stereographic conformal projection on the Clarke 1866 spheroid. The origin is at 64° N, 152° W.

POINT OF TANGENCY
Conceptual point of tangency at 64° N, 152° W.

LINEAR GRATICULES
None.

PROPERTIES

Shape
Perfectly conformal.

Area
Varies about 1.2 percent over Alaska.

Direction
Local angles are correct everywhere.

Distance
The minimum scale factor is 0.997 at approximately 62°30' N, 156° W. Scale increases outward from this point. Most of Alaska and the Aleutian Islands, but excluding the panhandle, are bounded by a line of true scale. The scale factor ranges from 0.997 to 1.003 for Alaska, which is one-fourth the range for a corresponding conic projection (Snyder, 1987).

LIMITATIONS
Distortion becomes severe away from Alaska.

USES AND APPLICATIONS
Conformal mapping of Alaska as a complete state on the Clarke 1866 spheroid or NAD27. This projection is not optimized for use with other datums and spheroids.

PROJECTION PARAMETERS
ArcInfo: ARC, ARC PLOT, ARC EDIT, ArcToolbox; PC ARC/INFO®; ArcCAD®

: PROJECTION ALASKA_GRID
: PARAMETERS

Projection-specific parameters are set by the software.
DESCRIPTION
This projection was developed in 1972 by the USGS to publish a map of Alaska at 1:2,500,000 scale.

PROJECTION METHOD
Approximates Equidistant Conic, although it is commonly referred to as a 'Modified Transverse Mercator'.

LINES OF CONTACT
The standard parallels at 53°30' N and 66°05'24" N.

LINEAR GRATICULES
The meridians are straight lines radiating from a center point. The parallels closely approximate concentric circular arcs.

PROPERTIES
Shape
Neither conformal nor equal area.

Area
Neither conformal nor equal area.

Direction
Distortion increases with distance from the standard parallels.

Distance
Accurate along the standard parallels.

LIMITATIONS
This projection is appropriate for mapping Alaska, the Aleutian Islands, and the Bering Sea region only.

USES AND APPLICATIONS
1972 USGS revision of a 1954 Alaska map that was published at 1:2,500,000 scale.

1974 map of the Aleutian Islands and the Bering Sea.

PROJECTION PARAMETERS
ArcInfo: ARC, ARC PLOT, ARC EDIT, ArcToolbox; PC ARC/INFO; ArcCAD
: PROJECTION ALASKA_E
: PARAMETERS
Projection-specific parameters are set by the software.
Albers Equal Area Conic

DESCRIPTION
This conic projection uses two standard parallels to reduce some of the distortion of a projection with one standard parallel. Although neither shape nor linear scale is truly correct, the distortion of these properties is minimized in the region between the standard parallels. This projection is best suited for land masses extending in an east-to-west orientation rather than those lying north to south.

PROJECTION METHOD
Conic. The meridians are equally spaced straight lines converging to a common point. Poles are represented as arcs rather than as single points. Parallels are unequally spaced concentric circles whose spacing decreases toward the poles.

LINES OF CONTACT
Two lines, the standard parallels, defined by degrees latitude.

LINEAR GRATICULES
All meridians.

PROPERTIES
Shape
Shape along the standard parallels is accurate and minimally distorted in the region between the standard parallels and those regions just beyond. The 90 degree angles between meridians and parallels are preserved, but because the scale along the lines of longitude does not match the scale along the lines of latitude, the final projection is not conformal.

Area
All areas are proportional to the same areas on the earth.

Direction
Locally true along the standard parallels.

Distance
Distances are best in the middle latitudes. Along parallels, scale is reduced between the standard parallels and increased beyond them. Along meridians, scale follows an opposite pattern.

LIMITATIONS
Best results for regions predominantly east-west in extent and located in the middle latitudes. Total range in latitude from north to south should not exceed 30–35 degrees. No limitations on east to west range.

USES AND APPLICATIONS
Used for small regions or countries but not for continents.

Conterminous United States, normally using 29°30' and 45°30' as the two standard parallels. For this projection, the maximum scale distortion for the 48 states is 1.25 percent.

Recommended choice of standard parallels can be calculated by determining the range in latitude in degrees north to south and dividing this range by six. The “One-Sixth Rule” places the first standard parallel at one-sixth the range above the southern boundary and the second standard parallel minus one-sixth the range below the northern limit. There are other possible approaches.
PROJECTION PARAMETERS

ArcInfo: ARC, ARCPLOT, ARCEDIT, ArcToolbox;
PC ARC/INFO; ArcCAD

: PROJECTION ALBERS
: PARAMETERS
1st standard parallel:
2nd standard parallel:
Central meridian:
Latitude of projections origin:
False easting (meters):
False northing (meters):

Projection Engine: ArcMap, ArcCatalog, ArcSDE,
MapObjects 2.x, ArcView Projection Utility

Central Meridian
Standard Parallel 1
Standard Parallel 2
Latitude of Origin
False Easting
False Northing

ArcView GIS

Central Meridian:
Reference Latitude:
Standard Parallel 1:
Standard Parallel 2:
False Easting:
False Northing:
AZIMUTHAL EQUIDISTANT

DESCRIPTION
The most significant characteristic is that both distance and direction are accurate from the central point. This projection can accommodate all aspects: equatorial, polar, and oblique.

PROJECTION METHOD
Planar. The world is projected onto a flat surface from any point on the globe. Although all aspects are possible, the one used most commonly is the polar aspect, in which all meridians and parallels are divided equally to maintain the equidistant property. Oblique aspects centered on a city are also common.

POINT OF TANGENCY
A single point, usually the North or the South Pole, defined by degrees of latitude and longitude.

LINEAR GRATICULES
Polar—Straight meridians are divided equally by concentric circles of latitude.

Equatorial—The Equator and the projection’s central meridian are linear and meet at a 90 degree angle.

Oblique—The central meridian is straight, but there are no 90 degree intersections except along the central meridian.

PROPERTIES
Shape
Except at the center, all shapes are distorted. Distortion increases from the center.

Area
Distortion increases outward from the center point.

Direction
True directions from the center outward.

Distance
Distances for all aspects are accurate from the center point outward. For the polar aspect, the distances along the meridians are accurate, but there is a pattern of increasing distortion along the circles of latitude, outward from the center.

LIMITATIONS
Usually limited to 90 degrees from the center, although it can project the entire globe. Polar-aspect projections are best for regions within a 30 degree radius because there is only minimal distortion.

Degrees from center:
15 30 45 60 90

Scale distortion in percent along parallels:
1.2 4.7 11.1 20.9 57

USES AND APPLICATIONS
Routes of air and sea navigation. These maps will focus on an important location as their central point and use an appropriate aspect.

Polar aspect—Polar regions and polar navigation.

Equatorial aspect—Locations on or near the equator, such as Singapore.

Oblique aspect—Locations between the poles and the equator such as large-scale mapping of Micronesia.

If this projection is used on the entire globe, the immediate hemisphere can be recognized and resembles the Lambert Azimuthal projection. The outer hemisphere greatly distorts shapes and areas.

In the extreme, a polar-aspect projection centered on the North Pole will represent the South Pole as its largest outermost circle. The function of this extreme projection is that, regardless of the conformal and area distortion, an accurate presentation of distance and direction from the center point is maintained.
PROJECTION PARAMETERS

ArcInfo: ARC, ARCPLOT, ARCEdit, ArcToolbox;
PC Arc/INFO; ArcCAD

Supported on a sphere only.

: PROJECTION AZIMUTHAL
: PARAMETERS
Radius of the sphere of reference:
Longitude of center of projection:
Latitude of center of projection:
False easting (meters):
False northing (meters):

Projection Engine: ArcMap™, ArcCatalog™, ArcSDE™, MapObjects® 2.x, ArcView GIS® Projection Utility

Central Meridian
Latitude of Origin
False Easting
False Northing

ArcView GIS

Central Meridian:
Reference Latitude:
BEHRMANN EQUAL AREA CYLINDRICAL

The central meridian is 0°.

DESCRIPTION
This projection is an equal area cylindrical projection suitable for world mapping.

PROJECTION METHOD
Cylindrical. Standard parallels are at 30° N and S. A case of Lambert Equal Area Cylindrical.

LINES OF CONTACT
The two parallels at 30° N and S.

LINEAR GRATICULES
Meridians and parallels are linear.

PROPERTIES

Shape
Shape distortion is minimized near the standard parallels. Shapes are distorted north-south between the standard parallels and distorted east-west above 30° N and below 30° S.

Area
Area is maintained.

Direction
Directions are generally distorted.

Distance
Directions are generally distorted except along the equator.

LIMITATIONS
Useful for world maps only.

USES AND APPLICATIONS
Only useful for world maps.

PROJECTION PARAMETERS
This projection is supported on a sphere only.

Projection Engine: ArcMap, ArcCatalog, ArcSDE, MapObjects 2.x, ArcView Projection Utility

Central Meridian
False Easting
False Northing

ArcView GIS
Parameters are set by the software.

Central Meridian: 0.0
Standard Parallel: 30.0

Supported map projections • 39
Bipolar Oblique Conformal Conic

DESCRIPTION
This projection was developed specifically for mapping North and South America and maintains conformality. It is based upon the Lambert Conformal Conic, using two oblique conic projections side by side.

PROJECTION METHOD
Two oblique conics are joined with the poles 104 degrees apart. A great circle arc 104 degrees long begins at 20° S and 110° W, cuts through Central America, and terminates at 45° N and approximately 19°59'36" W. The scale of the map is then increased by approximately 3.5 percent. The origin of the coordinates is 17°15' N, 73°02' W (Snyder, 1987).

LINES OF CONTACT
The two oblique cones are each conceptually secant. These standard lines do not follow any single parallel or meridian.

LINEAR GRATICULES
Only from each transformed pole to the nearest actual pole.

PROPERTIES
Shape
Conformality is maintained except for a slight discrepancy at the juncture of the two conic projections.

Area
Minimal distortion near the standard lines, increasing with distance.

Direction
Local directions are accurate because of conformality.

Distance
True along standard lines.

LIMITATIONS
Specialized for displaying North and South America only together. The Bipolar Oblique projection will display North America and South America only. If having problems, check all feature types (particularly annotation and tics) and remove any features that are beyond the range of the projection.

USES AND APPLICATIONS
Developed in 1941 by the American Geographical Society as a low-error single map of North and South America.

Conformal mapping of North and South America as a contiguous unit.

Used by USGS for geologic mapping of North America until replaced in 1979 by the Transverse Mercator.

PROJECTION PARAMETERS
ArcInfo: ARC, ARC PLOT, ARCEDIT, ArcToolbox; PC ARC/INFO; ArcCAD
Supported on a sphere only. Projection-specific parameters are set by the software.

:PROJECTION BIPOLAR_OBLIQUE
:PARAMETERS
Bonne

The central meridian is 0°.

DESCRIPTION
This equal area projection has true scale along the central meridian and all parallels. Equatorial aspect is a Sinusoidal. Polar aspect is a Werner.

PROJECTION METHOD
Pseudoconic. Parallels of latitude are equally spaced concentric circular arcs, marked true to scale for meridians.

POINT OF TANGENCY
A single standard parallel with no distortion.

LINEAR GRATICULES
The central meridian.

PROPERTIES

Shape
No distortion along the central meridian and standard parallel; error increases away from these lines.

Area
Equal area.

Direction
Locally true along central meridian and standard parallel.

Distance
Scale is true along the central meridian and each parallel.

LIMITATIONS
Usually limited to maps of continents or smaller regions. Distortion pattern makes other equal area projections preferable.

USES AND APPLICATIONS
During the 19th and early 20th century for atlas maps of Asia, Australia, Europe, and North America. Replaced by the Lambert Azimuthal Equal Area projection for continental mapping by Rand McNally & Co. and Hammond, Inc.

Large-scale topographic mapping of France and Ireland, along with Morocco and some other Mediterranean countries (Snyder, 1987).

PROJECTION PARAMETERS

ArcInfo: ARC, ARC PLOT, ARC EDIT, ArcToolbox;
PC ARC/INFO; ArcCAD

:PROJECTION BONNE
:PARAMETERS
Longitude of projection center:
Latitude of projection center:
False easting (meters):
False northing (meters):

Projection Engine: ArcMap, ArcCatalog, ArcSDE, MapObjects 2.x, ArcView Projection Utility

Central Meridian
Standard Parallel 1
False Easting
False Northing
Cassini–Soldner

The center of the projection is 0°, 0°.

DESCRIPTION

This transverse cylindrical projection maintains scale along the central meridian and all lines parallel to it and is neither equal area nor conformal. It is most suited for large-scale mapping of areas predominantly north–south in extent.

PROJECTION METHOD

A transverse cylinder is conceptually projected onto the globe and is tangent along the central meridian. Cassini is analogous to the Equirectangular projection in the same way Transverse Mercator is to the Mercator projection. The name Cassini–Soldner refers to the more accurate ellipsoidal version developed in the 19th century, used in this software.

POINT OF TANGENCY

Conceptually a line, specified as the central meridian.

LINEAR GRATICULES

The equator, central meridian, and meridians 90 degrees from the central meridian.

PROPERTIES

Shape

No distortion along the central meridian. Distortion increases with distance from the central meridian.

Area

No distortion along the central meridian. Distortion increases with distance from the central meridian.

Direction

Generally distorted.

Distance

Scale distortion increases with distance from the central meridian; however, scale is accurate along the central meridian and all lines perpendicular to the central meridian.

LIMITATIONS

Used primarily for large-scale mapping of areas near the central meridian. The extent on a spheroid is limited to five degrees to either side of the central meridian. Beyond that range, data projected to Cassini may not project back to the same position. Transverse Mercator often is preferred due to difficulty measuring scale and direction on Cassini.

USES AND APPLICATIONS

Normally used for large-scale maps of areas predominantly north–south in extent.

Used for the Ordnance Survey of Great Britain and some German states in the late 19th century. Also used in Cyprus, former Czechoslovakia, Denmark, Malaysia, and the former Federal Republic of Germany.
PROJECTION PARAMETERS

<table>
<thead>
<tr>
<th>ArcInfo:ARC,ARCPLOT,ARCEDIT,ArcToolbox;</th>
<th>PC ARC/INFO;ArcCAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>:PROJECTION CASSINI</td>
<td>:PARAMETERS</td>
</tr>
<tr>
<td>Longitude of projection center:</td>
<td>Latitude of projection center:</td>
</tr>
<tr>
<td>False easting (meters):</td>
<td>False northing (meters):</td>
</tr>
<tr>
<td>Projection Engine:ArcMap,ArcCatalog,ArcSDE, ArcView Projection Utility</td>
<td></td>
</tr>
<tr>
<td>Central Meridian</td>
<td>Reference Latitude:</td>
</tr>
<tr>
<td>Latitude of Origin</td>
<td>Scale Factor</td>
</tr>
<tr>
<td>False Easting</td>
<td>False Northing</td>
</tr>
</tbody>
</table>

ArcView GIS

Central Meridian:
Reference Latitude:
DESCRIPTION
This is the standard projection developed and used by the National Geographic Society for continental mapping. The distance from three input points to any other point is approximately correct.

PROJECTION METHOD
Modified planar.

LINEAR GRATICULES
None.

PROPERTIES
Shape
Shape distortion is low throughout if the three points are placed near the map limits.

Area
Areal distortion is low throughout if the three points are placed near the map limits.

Direction
Low distortion throughout.

Distance
Nearly correct representation of distance from three widely spaced points to any other point.

LIMITATIONS
The three selected input points should be widely spaced near the edge of the map limits.

Chamberlin can only be used in ArcInfo as an OUTPUT projection because the inverse equations (Chamberlin to geographic) have not been published.

You can’t project an ArcInfo grid or lattice to Chamberlin because the inverse equations are required.

USES AND APPLICATIONS
Used by the National Geographic Society as the standard map projection for most continents.

PROJECTION PARAMETERS
ArcInfo: ARC, ARCPLOT, ARCEdit, ArcToolbox; PC ARC/INFO, ArcCAD
Supported on a sphere only.

:PROJECTION CHAMBERLIN
:PARAMETERS
Longitude of point A:
Latitude of point A:
Longitude of point B:
Latitude of point B:
Longitude of point C:
Latitude of point C:
CraSTER ParABOLIC

The central meridian is 0°.

DESCRIPTION
This pseudocylindrical equal area projection is primarily used for thematic maps of the world. Also known as Putnins P4.

PROJECTION METHOD
Pseudocylindrical.

LINEAR GRATICULES
The central meridian is a straight line half as long as the equator. Parallels are unequally spaced, straight parallel lines perpendicular to the central meridian. Their spacing decreases very gradually as they move away from the equator.

PROPERTIES

Shape
Free of distortion at the central meridian at 36°46' N and S. Distortion increases with distance from these points and is most severe at the outer meridians and high latitudes. Interrupting the projection greatly reduces this distortion.

Area
Equal area.

Direction
Local angles are correct at the intersection of 36°46' N and S with the central meridian. Direction is distorted elsewhere.

Distance
Scale is true along latitudes 36°46' N and S. Scale is also constant along any given latitude and is symmetrical around the equator.

LIMITATIONS
Useful only as a world map.

USES AND APPLICATIONS
Thematic world maps.

PROJECT DIAGRAMS

PROJECTION PARAMETERS
ArClFo: ARCT, ARC PLOT, ARCDIT, ArcToolbox;
PC ARC/INFO; ArcCAD
Supported on a sphere only.

:PROJECTION CRASTER_PARABOLIC
:PARAMETERS
Longitude of central meridian:
Cylindrical Equal Area

DESCRIPTION
Lambert first described this equal area projection in 1772, and it has been used infrequently.

PROJECTION METHOD
Cylindrical. Type 1 is a normal, perspective projection onto a cylinder tangent at the equator. Type 2 and Type 3 are oblique aspects from which normal and transverse aspects are also possible.

POINTS OF INTERSECTION
Type 1 is tangent at the equator. Type 2 can be tangent or secant. Type 3 is tangent.

LINEAR GRATICULES

Type 1
In the normal, or equatorial aspect, all meridians and parallels are perpendicular straight lines. Meridians are equally spaced and 0.32 times the length of the equator. Parallels are unequally spaced and farthest apart near the equator. Poles are lines of length equal to the equator.

Types 2 and 3
In a transverse aspect, the equator along with the central meridian and a meridian perpendicular to the equator are straight lines. In an oblique aspect, only two meridians are straight lines.

PROPERTIES

Shape
Shape is true along the standard parallels of the normal aspect (Type 1) or the standard lines of the transverse and oblique aspects (Types 2 and 3). Distortion is severe near the poles of the normal aspect or 90° from the central line in the transverse and oblique aspects.

Area
There is no area distortion on any of the projections.

Direction
Local angles are correct along standard parallels or standard lines. Direction is distorted elsewhere.

Distance
Scale is true along the equator (Type 1) or the standard lines of the transverse and oblique aspects (Types 2 and 3). Scale distortion is severe near the poles of the normal aspect or 90° from the central line in the transverse and oblique aspects.

LIMITATIONS
Recommended for narrow areas extending along the central line. Severe distortion of shape and scale near poles of Type 1 and 90° from the central line of the transverse and oblique aspects.

USES AND APPLICATIONS
Type 1 is suitable for equatorial regions.

Suitable for regions of north-south extent or those following an oblique central line when using a transverse or oblique view, respectively.
PROJECTION PARAMETERS

ArclInfo: ARC, ARCPLOT, ARCEDIT, ArcToolbox; PC ARC/INFO; ArcCAD

Supported on a sphere only.

PROJECTION CYLINDRICAL PARAMETERS

Enter projection type (1, 2, or 3):

Type 1 parameters

Longitude of central meridian:
Latitude of standard parallel:

Type 2 parameters

Longitude of 1st point:
Latitude of 1st point:
Longitude of 2nd point:
Latitude of 2nd point:
Scale factor:

Type 3 parameters

Longitude of center of projection:
Latitude of center of projection:
Azimuth:
Scale factor:

Projection Engine: ArcMap, ArcCatalog, ArcSDE, MapObjects 2.x, ArcView Projection Utility

Central Meridian
Standard Parallel 1
False Easting
False Northing

ArcView GIS
This projection is supported on a sphere only.

Central Meridian:
Reference Latitude:
Double Stereographic

DESCRIPTION
Of all the azimuthal projections, this is the only one that is conformal.

PROJECTION METHOD
Planar perspective projection, viewed from the point on the globe opposite the point of tangency. Points are transformed from the spheroid to a Gaussian sphere before being projected to the plane.

All meridians and parallels are shown as circular arcs or straight lines. Graticular intersections are 90 degrees. In the equatorial aspect, the parallels curve in opposite directions on either side of the equator. In the oblique case, only the parallel with the opposite sign to the central latitude is a straight line; other parallels are concave toward the poles on either side of the straight parallel.

POINT OF CONTACT
A single point anywhere on the globe.

LINEAR GRATICULES
Polar aspect—All meridians.

Equatorial aspect—the central meridian and the equator.

Oblique aspect—the central meridian and parallel of latitude with the opposite sign of the central latitude.

PROPERTIES

Shape
Conformal. Local shapes are accurate.

Area
True scale at center with distortion increasing with distance.

Direction
Directions are accurate from the center. Local angles are accurate everywhere.

Distance
Scale increases with distance from the center.

LIMITATIONS
Normally limited to one hemisphere. Portions of the outer hemisphere may be shown, but with rapidly increasing distortion.

USES AND APPLICATIONS
The oblique aspect is used for large-scale coordinate systems in New Brunswick and the Netherlands.

PROJECTION PARAMETERS

| Projection Engine: ArcMap, ArcCatalog, ArcSDE, MapObjects 2.0, ArcView Projection Utility |
| Central Meridian | Latitude of Origin | Scale Factor | False Easting | False Northing |
DESCRIPTION
This pseudocylindrical projection is used primarily as a novelty map.

PROJECTION METHOD
A pseudocylindrical projection.

LINEAR GRATICULES
Parallels and meridians are equally spaced straight lines. The poles and the central meridian are straight lines half as long as the equator.

PROPERTIES

- **Shape**
 Shape isn't preserved.

- **Area**
 Area isn't preserved.

- **Direction**
 Direction is distorted everywhere.

- **Distance**
 Scale is correct only along 47°10' N and S.

LIMITATIONS
Discontinuities exist at the equator.

USES AND APPLICATIONS
Useful only as a novelty.

ECKERT I

The central meridian is 0°.

PROJECTION PARAMETERS
This projection is supported on a sphere only.

Projection Engine: ArcMap, ArcCatalog, ArcSDE, MapObjects 2.x, ArcView Projection Utility

Central Meridian
False Easting
False Northing
DESCRIPTION
A pseudocylindrical equal area projection.

PROJECTION METHOD
A pseudocylindrical projection.

Parallels are unequally spaced straight lines.
Meridians are equally spaced straight lines. The poles and the central meridian are straight lines half as long as the equator.

PROPERTIES

Shape
Shape isn't preserved.

Area
Area is preserved.

Direction
Direction is distorted everywhere.

Distance
Scale is correct along 55°10’ N and S.

LIMITATIONS
Discontinuities exist at the equator.

USES AND APPLICATIONS
Useful only as a novelty.

The central meridian is 100° W.

ECKERT II

PROJECTION PARAMETERS

Projection Engine: ArcMap, ArcCatalog, ArcSDE, MapObjects 2.x, ArcView Projection Utility
Supported on a sphere only.

Central Meridian
False Easting
False Northing
DESCRIPTION
This pseudocylindrical projection is used primarily for world maps.

PROJECTION METHOD
A pseudocylindrical projection.

LINEAR GRATICULES
Parallels are equally spaced straight lines. Meridians are equally spaced elliptical curves. The meridians at +/-180° from the central meridian are semicircles. The poles and the central meridian are straight lines half as long as the equator.

PROPERTIES

Shape
This stretching decreases to zero at 37°55' N and S. Nearer the poles, features are compressed in the north–south direction.

Area
Area isn’t preserved.

Direction
The equator doesn’t have any angular distortion. Direction is distorted elsewhere.

Distance
Scale is correct only along 37°55' N and S. Nearer the poles, features are compressed in the north–south direction.

LIMITATIONS
Useful only as a world map.

USES AND APPLICATIONS
Suitable for thematic mapping of the world.

PROJECTION PARAMETERS
Projection Engine: ArcMap, ArcCatalog, ArcSDE, MapObjects 2.x, ArcView Projection Utility
Supported on a sphere only.

<table>
<thead>
<tr>
<th>Central Meridian</th>
</tr>
</thead>
<tbody>
<tr>
<td>False Easting</td>
</tr>
<tr>
<td>False Northing</td>
</tr>
</tbody>
</table>
Eckert IV

![Eckert IV Projection](image)

The central meridian is 0°.

DESCRIPTION
This equal area projection is used primarily for world maps.

PROJECTION METHOD
A pseudocylindrical, equal area projection.

LINEAR GRATICULES
Parallels are unequally spaced straight lines, closer together at the poles. Meridians are equally spaced elliptical arcs. The poles and the central meridian are straight lines half as long as the equator.

PROPERTIES

Shape
Shapes are stretched north–south 40 percent along the equator, relative to the east–west dimension. This stretching decreases to zero at 40°30' N and S at the central meridian. Nearer the poles, features are compressed in the north–south direction.

Area
Equivalent.

Direction
Local angles are correct at the intersections of 40°30' N and S with the central meridian. Direction is distorted elsewhere.

Distance
Scale is distorted north–south 40 percent along the equator relative to the east-west dimension. This distortion decreases to zero at 40°30' N and S at the central meridian. Scale is correct only along these parallels. Nearer the poles, features are compressed in the north–south direction.

LIMITATIONS
Useful only as a world map.

USES AND APPLICATIONS
Thematic maps of the world such as climate.

PROJECTION PARAMETERS
Supported on a sphere only.

ArcInfo: ARC, ARC PLOT, ARC EDIT, ArcToolbox; PC ARC/INFO; ArcCAD

:: PROJECTION ECKERTIV
:: PARAMETERS
Longitude of central meridian:

Projection Engine: ArcMap, ArcCatalog, ArcSDE, MapObjects 2.x, ArcView Projection Utility

Central Meridian
False Easting
False Northing
Eckert V

The central meridian is 89° E.

DESCRIPTION
This pseudocylindrical projection is used primarily for world maps.

PROJECTION METHOD
A pseudocylindrical projection.

LINEAR GRATICULES
Parallels are equally spaced straight lines. Meridians are equally spaced sinusoidal curves. The poles and the central meridian are straight lines half as long as the equator.

PROPERTIES

Shape
This stretching decreases to zero at 37°55' N and S. Nearer the poles, features are compressed in the north–south direction.

Area
Area isn’t preserved.

Direction
The equator doesn’t have any angular distortion. Direction is distorted elsewhere.

Distance
Scale is correct only along 37°55' N and S. Nearer the poles, features are compressed in the north–south direction.

LIMITATIONS
Useful only as a world map.

USES AND APPLICATIONS
Suitable for thematic mapping of the world.

PROJECTION PARAMETERS
Projection Engine: ArcMap, ArcCatalog, ArcSDE, MapObjects 2.x, ArcView Projection Utility
Supported on a sphere only.

<table>
<thead>
<tr>
<th>Central Meridian</th>
</tr>
</thead>
<tbody>
<tr>
<td>False Easting</td>
</tr>
<tr>
<td>False Northing</td>
</tr>
</tbody>
</table>

Supported map projections • 53
Eckert VI

DESCRIPTION
This equal area projection is used primarily for world maps.

PROJECTION METHOD
A pseudocylindrical, equal area projection.

LINEAR GRATICULES
Parallels are unequally spaced straight lines, closer together at the poles. Meridians are equally spaced sinusoidal curves. The poles and the central meridian are straight lines half as long as the equator.

PROPERTIES
Shape
Shapes are stretched north-south 29 percent along the equator, relative to the east-west dimension. This stretching decreases to zero at 49°16' N and S at the central meridian. Nearer the poles, features are compressed in the north-south direction.

Area
Equivalent.

Direction
Local angles are correct at the intersection of 49°16' N and S with the central meridian. Direction is distorted elsewhere.

Distance
Scale is distorted north-south 29 percent along the equator relative to the east-west dimension. This distortion decreases to zero at 49°16' N and S at the central meridian. Scale is correct only along these parallels. Nearer the poles, features are compressed in the north-south direction.

LIMITATIONS
Useful only as a world map.

USES AND APPLICATIONS
Suitable for thematic mapping of the world.

World distribution maps in the 1937 World Atlas by the Soviet Union.

PROJECTION PARAMETERS
Supported on a sphere only.

ArcInfo: ARC, ARC PLOT, ARC EDIT, ArcToolbox;
PC ARC/INFO; ArcCAD
: PROJECTION ECKERT VI
: PARAMETERS
Longitude of central meridian:

Projection Engine: ArcMap, ArcCatalog, ArcSDE, MapObjects 2.x, ArcView Projection Utility
Central Meridian
False Easting
False Northing
Equidistant Conic

The central meridian is 60° W. The first and second standard parallels are 5° S and 42° S. The latitude of origin is 32° S.

DESCRIPTION

This conic projection can be based on one or two standard parallels. As the name implies, all circular parallels are spaced evenly along the meridians. This is true whether one or two parallels are used as the standards.

PROJECTION METHOD

Cone is tangential if one standard parallel is specified and secant for two standard parallels. Graticules are evenly spaced. Meridian spacing is equal, as is the space between each of the concentric arcs that describe the lines of latitude. The poles are represented as arcs rather than points.

If the pole is given as the single standard parallel, the cone becomes a plane and the resulting projection is the same as a polar Azimuthal Equidistant.

If two standard parallels are placed symmetrically north and south of the equator, the resulting projection is the same as the Equirectangular projection and you must use the Equirectangular projection.

Use the Equirectangular projection if the standard parallel is the equator.

LINES OF CONTACT

Depends on the number of standard parallels.

Tangential projections (Type 1)—One line, indicated by the standard parallel.

Secant projections (Type 2)—Two lines, specified as the first and second standard parallels.

LINEAR GRATICULES

All meridians.

PROPERTIES

Shape

Local shapes are true along the standard parallels. Distortion is constant along any given parallel but increases with distance from the standard parallels.

Area

Distortion is constant along any given parallel and increases with distance from the standard parallels.

Direction

Locally true along the standard parallels.

Distance

True along the meridians and the standard parallels. Scale is constant along any given parallel but changes from parallel to parallel.

LIMITATIONS

Range in latitude should be limited to 30 degrees.

USES AND APPLICATIONS

Regional mapping of mid-latitude areas with a predominantly east-west expanse.

Common for atlas maps of small countries.

Used by the Soviet Union for mapping the entire country.
PROJECTION PARAMETERS

ArcInfo:ARC,ARCPLOTT,ARCEDIT,ArcToolbox;
PC ARC/INFO;ArcCAD

:PROJECTION EQUIDISTANT
:PARAMETERS
Number of standard parallels < 1 | 2 >:

Type 1
Latitude of the standard parallel (DMS):
Longitude of the central meridian (DMS):
Latitude of the origin (DMS):
False easting (meters):
False northing (meters):

Type 2
Latitude of the 1st standard parallel (DMS):
Latitude of the 2nd standard parallel (DMS):
Longitude of the central meridian (DMS):
Latitude of the origin (DMS):
False easting (meters):
False northing (meters):

Projection Engine:ArcMap,ArcCatalog,ArcSDE,
MapObjects 2.x,ArcView Projection Utility

Central Meridian
Standard Parallel 1
Standard Parallel 2
Latitude of Origin
False Easting
False Northing

ArcView GIS

Central Meridian:
Reference Latitude:
Standard Parallel 1:
Standard Parallel 2:
Equidistant Cylindrical

DESCRIPTION
Also known as Equirectangular, Simple Cylindrical, Rectangular, or Plate Carrée (if the standard parallel is the equator).

This projection is very simple to construct because it forms a grid of equal rectangles. Because of its simple calculations, its usage was more common in the past. The polar regions are less distorted in scale and area than with the Mercator projection.

PROJECTION METHOD
This simple cylindrical projection converts the globe into a Cartesian grid. Each rectangular grid cell has the same size, shape, and area. All the graticular intersections are 90 degrees. The central parallel may be any line, but the traditional Plate Carrée projection uses the equator. When the equator is used, the grid cells are perfect squares, but if any other parallel is used, the grids become rectangular. In this projection, the poles are represented as straight lines across the top and bottom of the grid.

LINES OF CONTACT
Tangent at the equator or secant at two parallels symmetrical about the Equator.

LINEAR GRATICULES
All meridians and all parallels.

PROPERTIES

Shape
Distortion increases as the distance from the standard parallels increases.

Area
Distortion increases as the distance from the standard parallels increases.

Direction
North, south, east, and west directions are accurate. General directions are distorted, except locally along the standard parallels.

Distance
The scale is correct along the meridians and the standard parallels.

LIMITATIONS
Noticeable distortion away from standard parallels.

USES AND APPLICATIONS
Best used for city maps or other small areas with map scales large enough to reduce the obvious distortion.

Used for simple portrayals of the world or regions with minimal geographic data such as index maps.
PROJECTION PARAMETERS

This projection is supported on a sphere only.

ArcInfo: ARC, ARCPLOT, ARCEdit, ArcToolbox;
PC ARC/INFO; ArcCAD

:PROJECTION EQUIRECTANGULAR
:PARAMETERS
Radius of the sphere of reference:
Longitude of central meridian:
Latitude of standard parallel:
False easting (meters):
False northing (meters):

Projection Engine: ArcMap, ArcCatalog, ArcSDE,
MapObjects 2.x, ArcView Projection Utility

Central Meridian
Standard Parallel 1
False Easting
False Northing

ArcView GIS

Central Meridian:
Reference Latitude:
Equirectangular

DESCRIPTION
Also known as Simple Cylindrical, Equidistant Cylindrical, Rectangular, or Plate Carrée (if the standard parallel is the equator).

This projection is very simple to construct because it forms a grid of equal rectangles. Because of its simple calculations, its usage was more common in the past. The polar regions are less distorted in scale and area than with the Mercator projection.

PROJECTION METHOD
This simple cylindrical projection converts the globe into a Cartesian grid. Each rectangular grid cell has the same size, shape, and area. All the graticular intersections are 90 degrees. The central parallel may be any line, but the traditional Plate Carrée projection uses the equator. When the equator is used, the grid cells are perfect squares, but if any other parallel is used, the grids become rectangular. In this projection, the poles are represented as straight lines across the top and bottom of the grid.

LINES OF CONTACT
Tangent at the equator or secant at two parallels symmetrical around the equator.

LINEAR GRATICULES
All meridians and all parallels.

PROPERTIES

Shape
Distortion increases as the distance from the standard parallels increases.

Area
Distortion increases as the distance from the standard parallels increases.

Direction
North, south, east, and west directions are accurate. General directions are distorted, except locally along the standard parallels.

Distance
The scale is correct along the meridians and the standard parallels.

LIMITATIONS
Noticeable distortion away from standard parallels.

USES AND APPLICATIONS
Best used for city maps or other small areas with map scales large enough to reduce the obvious distortion.

Used for simple portrayals of the world or regions with minimal geographic data such as index maps.

PROJECTION PARAMETERS
ArcInfo: ARC, ARCPLOT, ARCEdit, ArcToolbox;
PC ARC/INFO; ArcCAD
Supported on a sphere only.

:PROJECTION EQUIRECTANGULAR
:PARAMETERS
Radius of the sphere of reference:
Longitude of central meridian:
Latitude of standard parallel:
False easting (meters):
False northing (meters):

Projection Engine: ArcMap, ArcCatalog, ArcSDE, MapObjects 2.x, ArcView Projection Utility

Central Meridian
Standard Parallel 1
False Easting
False Northing
Gall’s Stereographic

The central meridian is 176° E.

DESCRIPTION
Gall’s Stereographic is a cylindrical projection designed around 1855 with two standard parallels at latitudes 45° N and 45° S.

PROJECTION METHOD
Cylindrical stereographic projection based upon two standard parallels at 45° N and S. The globe is projected perspectively onto a secant cylinder from the point on the equator opposite a given meridian. Meridians are equally spaced straight lines. Parallels are straight lines with spacing increasing away from the equator. Poles are straight lines.

LINES OF CONTACT
Two lines at 45° N and S.

LINEAR GRATICULES
All meridians and parallels.

PROPERTIES

Shape
Shapes are true at latitudes 45° N and S. Distortion increases slowly from these latitudes and becomes severe at the poles.

Area
Area is true at latitudes 45° N and S. Distortion increases slowly from these latitudes and becomes severe at the poles.

Direction
Locally correct at latitudes 45° N and S. Generally distorted elsewhere.

Distance
Scale is true in all directions along latitudes 45° N and S. Scale is constant along parallels and is symmetrical around the equator. Distances are compressed between latitudes 45° N and S and expanded beyond them.

LIMITATIONS
Used only for world maps.

USES AND APPLICATIONS
World maps in British atlases.

PROJECTION PARAMETERS
This projection is supported on a sphere only.

ArcInfo: ARC, ARC PLOT, ARCEDIT, ArcToolbox; PC ARC/INFO, ArcCAD

:PROJECTION GALL_STEREOGRAPHIC
:PARAMETERS
Longitude of central meridian:

Projection Engine: ArcMap, ArcCatalog, ArcSDE, MapObjects 2.x, ArcView Projection Utility

Central Meridian
False Easting
False Northing
DESCRIPTION

Also known as Transverse Mercator (see that projection).

This projection is similar to the Mercator except that the cylinder is longitudinal along a meridian instead of the equator. The result is a conformal projection that does not maintain true directions. The central meridian is placed on the region to be highlighted. This centering minimizes distortion of all properties in that region. This projection is best suited for land masses that also stretch north to south. The Gauss–Krüger (GK) coordinate system is based on the Gauss–Krüger projection.

PROJECTION METHOD

Cylindrical projection with central meridian placed in a particular region.

LINES OF CONTACT

Any single meridian for the tangent projection. For the secant projection, two parallel lines equidistant from the central meridian.

LINEAR GRATICULES

The equator and the central meridian.

PROPERTIES

Shape

Conformal. Small shapes are maintained. Shapes of larger regions are increasingly distorted away from the central meridian.

Area

Distortion increases with distance from the central meridian.

Direction

Local angles are accurate everywhere.

Distance

Accurate scale along the central meridian if the scale factor is 1.0. If it is less than 1.0, then there are two straight lines having an accurate scale, equidistant from and on each side of the central meridian.

LIMITATIONS

Data on a spheroid or an ellipsoid cannot be projected beyond 90 degrees from the central meridian. In fact, the extent on a spheroid or ellipsoid should be limited to 10 to 12 degrees on both sides of the central meridian. Beyond that range, data projected may not project back to the same position. Data on a sphere does not have these limitations.

USES AND APPLICATIONS

Gauss–Krüger coordinate system. Gauss–Krüger divides the world into zones six degrees wide. Each zone has a scale factor of 1.0 and a false easting of 500,000 meters. The central meridian of zone 1 at 3° E. Some places also add the zone number times one million to the 500,000 false easting value. GK zone 5 could have a false easting value of 500,000 or 5,500,000 meters.

The UTM system is very similar. The scale factor is 0.9996, and the central meridian of UTM zone 1 is at 177° W. The false easting value is 500,000 meters, and southern hemisphere zones also have a false northing of 10,000,000.

PROJECTION PARAMETERS

ArcInfo: ARC, ARC PLOT, ARC EDIT, ArcToolbox;
PC ARC/INFO; ArcCAD

Use Transverse Mercator.

:PROJECTION TRANSVERSE
:PARAMETERS
Scale factor at central meridian:
Longitude of central meridian:
Latitude of origin:
False easting (meters):
False northing (meters):

Projection Engine: ArcMap, ArcCatalog, ArcSDE, MapObjects 2.x, ArcView Projection Utility

Central Meridian
Latitude of Origin
Scale Factor
False Easting
False Northing

ArcView GIS
Use Transverse Mercator.
Geographic coordinates are described as X, Y, Z values in a geocentric coordinate system.

DESCRIPTION
This coordinate system is included for historical reasons.

The geocentric coordinate system is not a map projection. The earth is modeled as a sphere or spheroid in a right-handed X, Y, Z system.

The X-axis points to the prime meridian, the Y-axis points 90 degrees away in the equatorial plane, and the Z-axis points in the direction of the North Pole.

USES AND APPLICATIONS
The geocentric coordinate system is used internally as an interim system for several geographic (datum) transformations methods.

PROJECTION PARAMETERS
ArcInfo: ARC, ARC PLOT, ARC EDIT, ArcToolbox;
PC ARC/INFO; ArcCAD
: PROJECTION GEOCENTRIC
: PARAMETERS
Projection-specific parameters are set by the software.
Geographic Coordinate System

DESCRIPTION
This coordinate system is included for historical reasons.

The geographic coordinate system is not a map projection. The earth is modeled as a sphere or spheroid. The sphere is divided into equal parts called degrees, usually. Some countries use grads. A circle is 360 degrees or 400 grads. Each degree is subdivided into 60 minutes, each composed of 60 seconds.

The geographic coordinate system consists of latitude and longitude lines. Each line of longitude runs north and south and measures the number of degrees east or west of the prime meridian. Values range from -180 to +180 degrees. Lines of latitude run from east to west and measure the number of degrees north or south of the equator. Values range from +90 degrees at the North Pole to -90 degrees at the South Pole.

The standard origin is where the Greenwich prime meridian meets the equator. All points north of the equator or east of the prime meridian are positive.

USES AND APPLICATIONS
Map projections use latitude and longitude values to reference parameters such as the central meridian, the standard parallels, and the latitude of origin.

PROJECTION PARAMETERS

ArcInfo: ARC, ARCPLOT, ARCEdit, ArcToolbox;
PC ARC/INFO; ArcCAD

:PROJECTION GEOGRAPHIC
:PARAMETERS

Projection Engine: ArcMap, ArcCatalog, ArcSDE, MapObjects 2.x, ArcView Projection Utility
Supported explicitly.

ArcView GIS
Use the Geographic projection in ‘Projections of the World’.

Geographic coordinates displayed as if the longitude–latitude values are linear units. An equivalent projection is Equirectangular with the standard parallel set to the equator.
Gnomonic

DESCRIPTION
This azimuthal projection uses the center of the earth as its perspective point. All great circles are straight lines, regardless of the aspect. This is a useful projection for navigation because great circles highlight routes with the shortest distance.

PROJECTION METHOD
This is a planar perspective projection viewed from the center of the globe. The projection can be any aspect.

POINT OF TANGENCY
A single point anywhere on the globe.
- Polar aspect—North Pole or South Pole.
- Equatorial aspect—Any point along the equator.
- Oblique aspect—Any other point.

LINEAR GRATICULES
All meridians and the Equator.

PROPERTIES

Shape
Increasingly distorted from the center; moderate distortion within 30 degrees of the center point.

Area
Distortion increases with distance from the center; moderate distortion within a 30 degree radius of the center.

Direction
Accurate from the center.

Distance
No line has an accurate scale, and the amount of distortion increases with distance from the center.

Scalar Distortion for Polar Aspect

<table>
<thead>
<tr>
<th>Degrees from Center (°)</th>
<th>15.0</th>
<th>30.0</th>
<th>45.0</th>
<th>60.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meridian Distortion (%)</td>
<td>7.2</td>
<td>33.3</td>
<td>100.0</td>
<td>300.0</td>
</tr>
<tr>
<td>Latitude Distortion (%)</td>
<td>3.5</td>
<td>15.5</td>
<td>41.4</td>
<td>100.0</td>
</tr>
</tbody>
</table>

LIMITATIONS
This projection is limited by its perspective point and cannot project a line that is 90 degrees or more from the center point; this means that the equatorial aspect cannot project the poles and the polar aspects cannot project the equator.

A radius of 30 degrees produces moderate distortion, as indicated in the table above. This projection should not be used more than about 60 degrees from the center.

USES AND APPLICATIONS
All aspects—Routes of navigation for sea and air.
- Polar aspect—Navigational maps of polar regions.
- Equatorial aspect—Navigational maps of Africa and the tropical region of South America.

The central meridian is 0° and the latitude of origin is 90° S.
PROJECTION PARAMETERS

ArcInfo: ARC, ARCPLOT, ARCEDIT, ArcToolbox;
PC ARC/INFO; ArcCAD

Supported on a sphere only.

```plaintext
:PROJECTION GNOMONIC
:PARAMETERS
Radius of the sphere of reference:
Longitude of center of projection:
Latitude of center of projection:
False easting (meters):
False northing (meters):

ArcView GIS

This projection is supported on a sphere only.

Central Meridian:
Reference Latitude:
```
Great Britain National Grid

The central meridian is 2° W and the latitude of origin is 49° N. The scale factor is 0.9996.

DESCRIPTION

This coordinate system is listed for historical reasons. This is a Transverse Mercator projected on the Airy spheroid. The central meridian is scaled to 0.9996. The origin is 49° N and 2° W.

PROJECTION METHOD

Cylindrical, transverse projection with the central meridian centered along a particular region.

LINES OF CONTACT

Two lines parallel with and 180 km from the central meridian at 2° W.

LINEAR GRATICULES

The central meridian.

PROPERTIES

Shape

Conformal; therefore, small shapes are maintained accurately.

Area

Distortion increases beyond Great Britain as the distance from the central meridian increases.

Direction

Local directions are accurately maintained.

Distance

Scale is accurate along the lines of secancy 180 km from the central meridian. Scale is compressed between them and expanded beyond them.

LIMITATIONS

Suitable for Great Britain. Limited in east-west extent.

USES AND APPLICATIONS

The national coordinate system for Great Britain; used for large-scale topographic mapping.

PROJECTION PARAMETERS

ArcInfo: ARC, ARC PLOT, ARCEDIT, ArcToolbox; PC ARC/INFO; ArcCAD

:PROJECTION GREATBRITAIN_GRID

:PARAMETERS

Projection-specific parameters are set by the software.

Projection Engine: ArcMap, ArcCatalog, ArcSDE, MapObjects 2.x, ArcView Projection Utility

Supported as British National Grid.

ArcView GIS

Use Great Britain under National Grids. Parameters are set by the software.
DESCRIPTION

The Hammer–Aitoff projection is a modification of the Lambert Azimuthal Equal Area projection.

PROJECTION METHOD

Modified azimuthal. The central meridian is a straight line half as long as the equator. The other meridians are complex curves, concave toward the central meridian and unequally spaced along the equator. The equator is a straight line; all other parallels are complex curves, concave toward the nearest pole and unequally spaced along the central meridian.

POINT OF TANGENCY

Central meridian at the equator.

LINEAR GRATICULES

The equator and central meridian are the only straight lines.

PROPERTIES

Shape

Distortion increases away from the origin.

Area

Equal area.

Direction

Local angles are true only at the center.

Distance

Scale decreases along the equator and central meridian as distance from the origin increases.

LIMITATIONS

Useful only as a world map.

USES AND APPLICATIONS

Thematic maps of the whole world.

PROJECTION PARAMETERS

ArcInfo: ARC, ARC PLOT, ARC EDIT, ArcToolbox;
PC ARC/INFO; ArcCAD
Supported on a sphere only.

ArcView GIS
This projection is supported on a sphere only.

Central Meridian:
DESCRIPTION
Also known as Oblique Cylindrical Orthomorphic.

This is an oblique rotation of the Mercator projection. Developed for conformal mapping of areas that do not follow a north-south or east-west trend but are obliquely oriented.

PROJECTION METHOD
Cylindrical. Oblique aspect of the Mercator projection. Oblique Mercator has several different types. You can define the tilt of the projection by either specifying two points or a point and an angle measuring east of north (the azimuth).

By default, the coordinate origin of the projected coordinates is located where the central line of the projection crosses the equator. As an example, if you use an Oblique Mercator (natural origin) for West Virginia, while the center of the projection is (-80.75, 38.5), the natural origin is approximately (-112.8253, 0.0). You can move the projection origin to the center of your data by using the Two Point Center or Azimuth Center cases.

LINE OF TANGENCY
A single oblique great-circle line or secancy along two oblique small circles parallel to and equidistant from the central great circle.

LINEAR GRATICULES
Two meridians 180° apart.

PROPERTIES
Shape
Conformal. Local shapes are true.

Area
Distortion increases with distance from the central line.

Direction
Local angles are correct.

Distance
True along the chosen central line.

LIMITATIONS
Use should be limited to regions near the central line. When using an ellipsoid, constant scale along the central line and perfect conformality cannot be maintained simultaneously.

USES AND APPLICATIONS
Ideal for conformal mapping of regions trending in an oblique direction.

Large-scale mapping for the Alaskan panhandle. Switzerland uses a different implementation of Oblique Mercator by Rosenmund, while Madagascar uses the Laborde version. These implementations aren't compatible.

PROJECTION PARAMETERS
ArcInfo: ARC, ARC PLOT, AR CE D IT, Arc Toolbox; PC ARC/INFO, Arc CAD

This version of Hotine uses the natural origin version of the projection.

:PROJECTION OBLIQUE_MERCATOR
:PARAMETERS
Enter projection type <1 | 2>:

Type 1 uses a central line defined by two points.

Scale factor at the projection's center:
Latitude of the projection's center:
Longitude of 1st point on the central line:
Latitude of 1st point on the central line:
Longitude of 2nd point on the central line:
Latitude of 2nd point on the central line:
False easting (meters):
False northing (meters):

Type 2 uses a central line defined by one point and its angle of azimuth.

Scale factor at the projection's center:
Longitude of the projection's center:
Latitude of the projection's center:
Azimuth at the projection's center:
False easting (meters):
False northing (meters):
Projection Engine: ArcMap, ArcCatalog, ArcSDE, MapObjects 2.x, ArcView Projection Utility

Unlike the older ESRI version of Oblique Mercator, we now explicitly support both natural origin and center versions.

Two Point Natural Origin or Center:
- Longitude of 1st Point
- Latitude of 1st Point
- Longitude of 2nd Point
- Latitude of 2nd Point
- Latitude of Center
- Scale Factor
- False Easting
- False Northing

Azimuth Natural Origin or Center:
- Longitude of Center
- Latitude of Center
- Azimuth
- Scale Factor
- False Easting
- False Northing

ArcView GIS
- Longitude of Central Point:
- Latitude of Central Point:
- Azimuth of Central Line:
- Scale Factor along Central Line:
- False Easting:
- False Northing:
LAMBERT AZIMUTHAL EQUAL AREA

DESCRIPTION
This projection preserves the area of individual polygons while simultaneously maintaining a true sense of direction from the center. The general pattern of distortion is radial. It is best suited for individual land masses that are symmetrically proportioned, either round or square.

PROJECTION METHOD
Planar, projected from any point on the globe. This projection can accommodate all aspects: equatorial, polar, and oblique.

POINT OF TANGENCY
A single point, located anywhere, specified by longitude and latitude.

LINEAR GRATICULES
All aspects—The central meridian defining the point of tangency.
Equatorial aspect—The equator.
Polar aspect—All meridians.

PROPERTIES

Shape
Shape is minimally distorted, less than 2 percent, within 15 degrees from the focal point. Beyond that, angular distortion is more significant; small shapes are compressed radially from the center and elongated perpendicularly.

Area
Equal area.

Direction
True direction radiating from the central point.

Distance
True at center. Scale decreases with distance from the center along the radii and increases from the center perpendicularly to the radii.

LIMITATIONS
The data must be less than a hemisphere in extent. The software cannot process any area more than 90 degrees from the central point.

USES AND APPLICATIONS
Population density (area).
Political boundaries (area).
Oceanic mapping for energy, minerals, geology and tectonics (direction).
This projection can handle large areas, thus it is used for displaying entire continents and polar regions.

Equatorial aspect Africa, Southeast Asia, Australia, the Caribbean and Central America
Oblique aspect North America, Europe, and Asia

The central meridian is 0° and the latitude of origin is 90° S.
PROJECTION PARAMETERS

ArcInfo: ARC, ARCPLOT, ARCEdit, ArcToolbox;
PC ARC/INFO; ArcCAD

Supported on a sphere only.

: PROJECTION LAMBERT_AZIMUTH
: PARAMETERS
Radius of sphere of reference:
Longitude of center of projection:
Latitude of center of projection:
False easting:
False northing:

Projection Engine: ArcMap, ArcCatalog, ArcSDE,
MapObjects 2.x, ArcView Projection Utility

Central Meridian
Latitude of Origin
False Easting
False Northing

ArcView GIS
This projection is supported on a sphere only.

Central Meridian:
Reference Latitude:
Lambert Conformal Conic

The central meridian is 125° E. The first and second standard parallels are 32° S and 7° N while the latitude of origin is 32° S.

DESCRIPTION
This projection is one of the best for middle latitudes. It is similar to the Albers Conic Equal Area projection except that Lambert portrays shape more accurately than area. The State Plane Coordinate System uses this projection for all east-west zones.

PROJECTION METHOD
Conic projection normally based on two standard parallels, making it a secant projection. The latitude spacing increases beyond the standard parallels. This is the only common conic projection that represents the poles as a single point.

LINES OF CONTACT
The two standard parallels.

LINEAR GRATICULES
All meridians.

PROPERTIES
Shape
All graticular intersections are 90 degrees. Small shapes are maintained.

Area
Minimal distortion near the standard parallels. Areal scale is reduced between standard parallels and increased beyond them.

Direction
Local angles are accurate throughout because of conformality.

Distance
Correct scale along the standard parallels. The scale is reduced between the parallels and increased beyond them.

LIMITATIONS
Best for regions predominantly east-west in extent and located in the middle north or south latitudes. Total latitude range should not exceed 35 degrees.

USES AND APPLICATIONS
State Plane Coordinate System (SPCS) for all east-west zones.

USGS 7½-minute quad sheets to match the State Plane Coordinate System.

Many new USGS maps after 1957. It replaced the Polyconic projection.

Continental United States: standard parallels, 33° and 45° N.

Entire United States: standard parallels, 37° and 65° N.
PROJECTION PARAMETERS

ArcInfo: ARC, ARCPLOT, ARCEDIT, ArcToolbox;
PC ARC/INFO; ArcCAD

- :PROJECTION LAMBERT
- :PARAMETERS
- 1st standard parallel:
- 2nd standard parallel:
- Central meridian:
- Latitude of projections origin:
- False easting (meters):
- False northing (meters):

Projection Engine: ArcMap, ArcCatalog, ArcSDE,
MapObjects 2.x, ArcView Projection Utility

- Central Meridian
- Standard Parallel 1
- Standard Parallel 2
- Latitude of Origin
- False Easting
- False Northing

ArcView GIS

- Central Meridian:
- Reference Latitude:
- Standard Parallel 1:
- Standard Parallel 2:
- False Easting:
- False Northing:
Local Cartesian Projection

DESCRIPTION
This is a specialized map projection that does not take into account the curvature of the earth. It's designed for very large-scale mapping applications.

PROJECTION METHOD
The coordinates of the center of the area of interest define the origin of the local coordinate system. The plane is tangent to the spheroid at that point, and the differences in z are negligible between corresponding points on the spheroid and the plane. Because the differences in z are ignored, distortions will greatly increase beyond roughly one degree from the origin.

USES AND APPLICATIONS
Large-scale mapping. Should not be used for areas greater than one degree from the origin.

PROJECTION PARAMETERS
ArcInfo: ARC, ARCPLOT, ARCEDIT, ArcToolbox; PC Arc/INFO; ArcCAD
:PROJECTION LOCAL
:PARAMETERS
Longitude of the origin:
Latitude of the origin:
DESCRIPTION
Karl Siemon created this pseudocylindrical projection in 1935. Also presented in 1966 by Waldo Tobler. Loxodromes, or rhumb lines, are shown as straight lines with the correct azimuth and scale from the intersection of the equator and the central parallel.

PROJECTION METHOD
Pseudocylindrical. All parallels are straight lines, and all meridians are equally spaced arcs except the central meridian, which is a straight line. The poles are points.

LINEAR GRATICULES
The parallels and central meridian.

PROPERTIES

Shape
Shape is generally distorted.

Area
Generally distorted.

Direction
Directions are true only at the intersection of the central meridian and central latitude. Direction is distorted elsewhere.

Distance
Scale is true along the central meridian. Constant along any latitude. Opposite latitude has a different scale if the central parallel isn’t the equator.

LIMITATIONS
Useful only to show loxodromes.

USES AND APPLICATIONS
Suitable for displaying loxodromes.

PROJECTION PARAMETERS

Projection Engine: ArcMap, ArcCatalog, ArcSDE, MapObjects 2.x, ArcView Projection Utility
This projection is supported on a sphere only.

Central Meridian
Central Parallel
False Easting
False Northing
McBryde–Thomas Flat-Polar Quartic

The central meridian is 0°.

DESCRIPTION
This equal area projection is primarily used for world maps.

PROJECTION METHOD
A pseudocylindrical, equal area projection in which all parallels are straight lines and all meridians, except the straight central meridian, are equally spaced, fourth-order (quartic) curves.

LINEAR GRATICULES
All parallels are unequally spaced straight lines that are closer together at the poles. The poles are straight lines one-third as long as the equator. The central meridian is a straight line 0.45 times as long as the equator.

PROPERTIES

Shape
Shapes are stretched north-south along the equator, relative to the east-west dimension. This stretching decreases to zero at 33°45' N and S at the central meridian. Nearer the poles, features are compressed in the north-south direction.

Area
Equal area.

Direction
Distorted except at the intersection of 33°45' N and S and the central meridian.

Distance
Scale is distorted everywhere except along 33°45' N and S.

LIMITATIONS
Useful only as a world map.

USES AND APPLICATIONS
Thematic maps of the world.

PROJECTION PARAMETERS
ArcInfo: ARC, ARC PLOT, ARC EDIT, ArcToolbox; PC ARC/INFO; ArcCAD
Supported on a sphere only.

:PROJECTION FLAT_POLAR_QUARTIC
:PARAMETERS
Longitude of projection's center:
Mercator

The central meridian is 0°.

DESCRIPTION
Originally created to display accurate compass bearings for sea travel. An additional feature of this projection is that all local shapes are accurate and clearly defined.

PROJECTION METHOD
Cylindrical projection. Meridians are parallel to each other and equally spaced. The lines of latitude are also parallel but become farther apart toward the poles. The poles cannot be shown.

LINES OF CONTACT
The equator or two latitudes symmetrical around the equator.

LINEAR GRATICULES
All meridians and all parallels.

PROPERTIES

Shape
Conformal. Small shapes are well represented because this projection maintains the local angular relationships.

Area
Increasingly distorted toward the polar regions. For example, in the Mercator projection, although Greenland is only one-eighth the size of South America, Greenland appears to be larger.

Direction
Any straight line drawn on this projection represents an actual compass bearing. These true direction lines are rhumb lines and generally do not describe the shortest distance between points.

Distance
Scale is true along the equator or along the secant latitudes.

LIMITATIONS
The poles cannot be represented on the Mercator projection. All meridians can be projected, but the upper and lower limits of latitude are approximately 80° N and S. Large area distortion makes the Mercator projection unsuitable for general geographic world maps.

USES AND APPLICATIONS
Standard sea navigation charts (direction).

Other directional uses: air travel, wind direction, ocean currents.

Conformal world maps.

The best use of this projection's conformal properties applies to regions near the equator such as Indonesia and parts of the Pacific Ocean.
PROJECTION PARAMETERS

ArcInfo: ARCA, ARCEDIT, ArcToolbox;
PC ARC/INFO; ArcCAD

::PROJECTION MERCATOR
::PARAMETERS
Longitude of central meridian:
Latitude of true scale:
False easting (meters):
False northing (meters):

Projection Engine: ArcMap, ArcCatalog, ArcSDE,
MapObjects 2.x, ArcView Projection Utility

Central Meridian
Standard Parallel 1
False Easting
False Northing

ArcView GIS

Central Meridian:
Latitude of True Scale:
False Easting:
False Northing:
Miller Cylindrical

DESCRIPTION
This projection is similar to the Mercator projection except that the polar regions are not as areally distorted. Spacing between lines of latitude as they approach the poles is less than Mercator. It decreases the distortion in area, but the compromise introduces distortion in local shape and direction.

PROJECTION METHOD
Cylindrical projection. Meridians are parallel and equally spaced, lines of latitude are parallel, and the distance between them increases toward the poles. Both poles are represented as straight lines.

LINE OF CONTACT
The equator.

LINEAR GRATICULES
All meridians and all parallels.

PROPERTIES
Shape
Minimally distorted between 45th parallels, increasingly toward the poles. Land masses are stretched more east to west than they are north to south.

Area
Distortion increases from the equator toward the poles.

Direction
Local angles are correct only along the equator.

Distance
Correct distance is measured along the equator.

LIMITATIONS
Useful only as a world map.

USES AND APPLICATIONS
General-purpose world maps.

PROJECTION PARAMETERS
This projection is supported on a sphere only.

ArcInfo: ARC, ARC PLOT, ARC EDIT, ArcToolbox;
PC ARC/INFO; ArcCAD
: PROJECTION MILLER
: PARAMETERS
Radius of the sphere of reference:
Longitude of central meridian:
False easting (meters):
False northing (meters):

Projection Engine: ArcMap, ArcCatalog, ArcSDE,
MapObjects 2.x, ArcView Projection Utility
Central Meridian
False Easting
False Northing

ArcView GIS
Central Meridian:
DESCRIPTION
Also called Babinet, Elliptical, Homolographic, or Homalographic.

Carl B. Mollweide created this pseudocylindrical projection in 1805. It is an equal area projection designed for small-scale maps.

PROJECTION METHOD
Pseudocylindrical equal area projection. All parallels are straight lines, and all meridians are equally spaced elliptical arcs, except the central meridian, which is a straight line. The poles are points.

LINEAR GRATICULES
The equator and central meridian.

PROPERTIES
Shape
Shape is not distorted at the intersection of the central meridian and latitudes 40°44' N and S. Distortion increases outward from these points and becomes severe at the edges of the projection.

Area
Equal area.

Direction
Local angles are true only at the intersection of the central meridian and latitudes 40°44' N and S. Direction is distorted elsewhere.

Distance
Scale is true along latitudes 40°44' N and S.

Distortion increases with distance from these lines and becomes severe at the edges of the projection.

LIMITATIONS
Useful only as a world map.

USES AND APPLICATIONS
Suitable for thematic or distribution mapping of the entire world, frequently in interrupted form.

Combined with the Sinusoidal to create Goode's Homolosine and Boggs.

The central meridian is 65° E.

PROJECTION PARAMETERS
This projection is supported on a sphere only.

ArcInfo: ARC, ARCPLOT, ARCEdit, ArcToolbox; PC ARC/INFO; ArcCAD
:PROJECTON MOLLWEIDE :PARAMETERS
Longitude of projection center:

Projection Engine: ArcMap, ArcCatalog, ArcSD E, MapObjects 2.x, ArcView Projection Utility
Central Meridian
False Easting
False Northing

ArcView GIS
Central Meridian:
New Zealand National Grid

DESCRIPTION
This coordinate system is listed for historic reasons. This is the standard projection for large-scale maps of New Zealand.

PROJECTION METHOD
Modified cylindrical. A sixth-order conformal modification of a Mercator using the International spheroid.

POINT OF TANGENCY
173° E, 41° S.

LINEAR GRATICULES
None.

PROPERTIES
Shape

Conformal. Local shapes are correct.

Area
Minimal distortion, less than 0.04 percent for New Zealand.

Direction
Minimal distortion within New Zealand.

Distance
Scale is within 0.02 percent of true scale for New Zealand.

LIMITATIONS
Not useful for areas outside New Zealand.

USES AND APPLICATIONS
New Zealand.

PROJECTION PARAMETERS
ArcInfo: ARC, ARC PLOT, ARC EDIT, ArcToolbox; PC ARC/INFO; ArcCAD
:PROJECTION NEWZEALAND_GRID
:PARAMETERS
Projection-specific parameters are set by the software.

ArcView GIS
Use New Zealand under National Grids. Parameters are set by the software.
ORTHOGRAPHIC

DESCRIPTION
This perspective projection views the globe from an infinite distance. This gives the illusion of a three-dimensional globe. Distortion in size and area near the projection limit appear more realistic to our eye than almost any other projection, except the Vertical Near-Side Perspective.

PROJECTION METHOD
Planar perspective projection, viewed from infinity. On the polar aspect, meridians are straight lines radiating from the center, and the lines of latitude are projected as concentric circles that become closer toward the edge of the globe. Only one hemisphere can be shown without overlapping.

POINT OF CONTACT
A single point located anywhere on the globe.

LINEAR GRATICULES
All aspects—The central meridian of the projection.
Equatorial aspect—All lines of latitude.
Polar aspect—All meridians.

PROPERTIES
Shape
Minimal distortion near the center; maximal distortion near the edge.

Area
The areal scale decreases with distance from the center. Areal scale is zero at the edge of the hemisphere.

Direction
True direction from the central point.

Distance
The radial scale decreases with distance from the center and becomes zero on the edges. The scale perpendicular to the radii, along the parallels of the polar aspect, is accurate.

LIMITATIONS
Limited to a view 90 degrees from the central point, a global hemisphere.

USES AND APPLICATIONS
Uses of this projection are aesthetic more than technical. The most commonly used aspect for this purpose is the oblique.

PROJECTION PARAMETERS
This projection is supported on a sphere only.

ArcInfo: ARC, ARC PLOT, ARC EDIT, ArcToolbox;
PC ARC/INFO; ArcCAD

:PROJECTION ORTHOGRAPHIC
:PARAMETERS
Radius of the sphere of reference:
Longitude of center of projection:
Latitude of center of projection:
False easting (meters):
False northing (meters):

ArcView GIS
Central Meridian:
Reference Latitude:
DESCRIPTION
Also known as Vertical Near-Side Perspective or Vertical Perspective.

This projection is similar to the Orthographic projection in that its perspective is from space. In this projection, the perspective point is not an infinite distance away; instead, the user can specify the distance. The overall effect of this projection is that it looks like a photograph taken vertically from a satellite or space vehicle.

PROJECTION METHOD
Planar perspective projection. The distance above the earth is variable and must be specified before the projection can be calculated. The greater the distance, the more closely this projection resembles the Orthographic projection. All aspects are circular projections of an area less than a hemisphere.

POINT OF CONTACT
A single point anywhere on the globe.

LINEAR GRATICULES
All aspects—The central meridian of the projection.
Polar aspect—All meridians.

Equatorial aspect—The equator.

PROPERTIES

Shape
Minimally distorted near the center, increasing toward the edge.

Area
Minimally distorted near the center; the area scale then decreases to zero on the edge or horizon.

Direction
True directions from the point of tangency.

Distance
Radial scale decreases from true scale at the center to zero on the projection edge. The scale perpendicular to the radii decreases, but not as rapidly.

LIMITATIONS
The actual range depends on the distance from the globe. In all cases, the range is less than 90 degrees from the center.

USES AND APPLICATIONS
Used as an aesthetic presentation rather than for technical applications.

PROJECTION PARAMETERS
This projection is supported on a sphere only.

ArcInfo: ARC, ARCPLOT, ARCEDIT, ArcToolbox; PC ARC/INFO; ArcCAD

:PROJECTION PERSPECTIVE
:PARAMETERS
Radius of the sphere of reference:
Height of perspective point above sphere:
Longitude of center of projection:
Latitude of center of projection:
False easting (meters):
False northing (meters):

ArcView GIS
Use Vertical Near-Side Perspective under Custom.

Central Meridian
Reference Latitude
Height of Viewpoint
DESCRIPTION
This projection is an equal area cylindrical projection with standard parallels at 45° N and S.

PROJECTION METHOD
Cylindrical. Standard parallels are at 45° N and S. A case of the Lambert Equal Area Cylindrical projection.

LINES OF CONTACT
The two parallels at 45° N and S.

LINEAR GRATICULES
Meridians and parallels are linear.

PROPERTIES
Shape
Shape distortion is minimized near the standard parallels. Shapes are distorted north-south between the standard parallels and distorted east-west above 45° N and below 45° S.

Area
Area is maintained.

Direction
Directions are generally distorted.

Distance
Directions are generally distorted except along the equator.

LIMITATIONS
Useful as a world map only.

USES AND APPLICATIONS
Only useful for world maps.

PROJECTION PARAMETERS
ArcView GIS
This projection is supported on a sphere only. Parameters are set by the software.
Central Meridian: 0.0
Standard Parallel: 45.0
 Plate Carrée

DESCRIPTION
Also known as Equirectangular, Simple Cylindrical, Rectangular, or Plate Carrée (if the standard parallel is the equator).

This projection is very simple to construct because it forms a grid of equal rectangles. Because of its simple calculations, its usage was more common in the past. The polar regions are less distorted in scale and area than with the Mercator projection.

PROJECTION METHOD
This simple cylindrical projection converts the globe into a Cartesian grid. Each rectangular grid cell has the same size, shape, and area. All the graticular intersections are 90 degrees. The traditional Plate Carrée projection uses the equator as the standard parallel. The grid cells are perfect squares. In this projection, the poles are represented as straight lines across the top and bottom of the grid.

LINE OF CONTACT
Tangent at the equator.

LINEAR GRATICULES
All meridians and all parallels.

PROPERTIES
Shape
Distortion increases as the distance from the standard parallels increases.

Area
Distortion increases as the distance from the standard parallels increases.

Direction
North, south, east, and west directions are accurate. General directions are distorted, except locally along the standard parallels.

Distance
The scale is correct along the meridians and the standard parallels.

LIMITATIONS
Noticeable distortion away from standard parallels.

USES AND APPLICATIONS
Best used for city maps or other small areas with map scales large enough to reduce the obvious distortion.

Used for simple portrayals of the world or regions with minimal geographic data such as index maps.

PROJECTION PARAMETERS
This projection is supported on a sphere only.

ArcInfo: ARC, ARC PLOT, ARC EDIT, ArcToolbox;
PC ARC/INFO; ArcCAD
Use Equirectangular and set the 'Latitude of standard parallel' parameter to 0.0.

: PROJECTION EQUIRECTANGULAR
: PARAMETERS
Radius of the sphere of reference:
Longitude of central meridian:
Latitude of standard parallel:
False easting (meters):
False northing (meters):

Projection Engine: ArcMap, ArcCatalog, ArcSDE,
MapObjects 2.x, ArcView Projection Utility

Central Meridian
Standard Parallel 1
False Easting
False Northing

ArcView GIS
Parameters are set by the software.

Central Meridian: 0.0
Reference Latitude: 0.0
Polar Stereographic

DESCRIPTION
The projection is equivalent to the polar aspect of the Stereographic projection on a spheroid. The central point is either the North Pole or the South Pole. This is the only polar aspect planar projection that is conformal. The Polar Stereographic projection is used for all regions not included in the UTM Coordinate System, regions north of 84° N and south of 80° S. Use UPS for these regions.

PROJECTION METHOD
Planar perspective projection, where one pole is viewed from the other pole. Lines of latitude are concentric circles. The distance between circles increases with distance from the central pole.

POINT OF TANGENCY
A single point, either the North Pole or the South Pole. If the plane is secant instead of tangent, the point of global contact is a line of latitude.

LINEAR GRATICULES
All meridians.

PROPERTIES

Shape
Conformal; accurate representation of local shapes.

Area
The farther from the pole, the greater the areal scale.

Direction
True direction from the pole. Local angles are true everywhere.

Distance
The scale increases with distance from the center. If a standard parallel is chosen rather than one of the poles, this latitude represents the true scale, and the scale nearer the pole is reduced.

LIMITATIONS
Normally not extended more than 90° from the central pole because of increased scale and area distortion.

USES AND APPLICATIONS
Polar regions (conformal).

In the UPS system, the scale factor at the pole is 0.994, which corresponds to a latitude of true scale (standard parallel) at 81°06'52.3" N or S.

PROJECTION PARAMETERS
ArcInfo: ARC, ARC PLOT, ARCPLOT, ArcToolbox; PC ARC/INFO; ArcCAD
:PROJECTION POLAR
:PARAMETERS
Longitude of central meridian:
Latitude of true scale:
False easting (meters):
False northing (meters):

Projection Engine: ArcMap, ArcCatalog, ArcSDE, MapObjects 2.x, ArcView Projection Utility
Use a polar case of the Stereographic projection.
Polyconic

The central meridian is 90° W.

DESCRIPTION
The name of this projection translates into ‘many cones’ and refers to the projection methodology. This affects the shape of the meridians. Unlike other conic projections, the meridians are curved rather than linear.

PROJECTION METHOD
More complex than the regular conic projections, but still a simple construction. This projection is created by lining up an infinite number of cones along the central meridian. This projection yields parallels that are NOT concentric. Each line of latitude represents the base of its tangential cone.

LINES OF CONTACT
MANY lines; all parallels of latitude in the projection.

LINEAR GRATICULES
Central meridian of the projection and the equator.

PROPERTIES

Shape
No local shape distortion along the central meridian. Distortion increases with distance from the central meridian; thus, distortion to the east and west is greater than distortion to the north and south.

Area
Distortion in area increases with distance from the central meridian.

Direction
Local angles are accurate along the central meridian; otherwise, they are distorted.

Distance
The scale along each parallel and along the central meridian of the projection is accurate. It increases along the meridians as the distance from the central meridian increases.

LIMITATIONS
Distortion is minimized on large-scale maps, such as topographic quadrangles, where meridians and parallels can be drawn in practice as straight-line segments. Producing a map library with this kind of map sheet is not advisable because errors accumulate and become visible when joining sheets in multiple directions.

USES AND APPLICATIONS
7½- and 15-minute topographic USGS quad sheets, from 1886 until approximately 1957. Note: Some new quad sheets after this date have been falsely documented as Polyconic. The present projection for east-west State Plane Coordinate System zones is Lambert Conformal Conic, and Transverse Mercator for north-south state zones.

PROJECTION PARAMETERS

ArcInfo: ARC, ARCPLOT, ARCEdit, ArcToolbox; PC ARC/INFO; ArcCAD

:PROJECTION POLYCONIC
:PARAMETERS
Longitude of central meridian:
Latitude of projections origin:
False easting (meters):
False northing (meters):

Projection Engine: ArcMap, ArcCatalog, ArcSDE, MapObjects 2.x, ArcView Projection Utility

Central Meridian
Latitude of Origin
False Easting
False Northing
Quartic Authalic

DESCRIPTION
This pseudocylindrical equal area projection is primarily used for thematic maps of the world.

PROJECTION METHOD
Pseudocylindrical, equal area projection.

LINEAR GRATICULES
The central meridian is a straight line 0.45 the length of the equator. Meridians are equally spaced curves. Parallels are unequally spaced, straight parallel lines perpendicular to the central meridian. Their spacing decreases very gradually as they move away from the equator.

PROPERTIES
Shape
Generally distorted.

Area
Equal area.

Direction
Direction is generally distorted.

Distance
Scale is true along the equator. Scale is also constant along any given latitude and is symmetrical around the equator.

LIMITATIONS
Useful only as a world map.

USES AND APPLICATIONS
Thematic world maps. The McBryde–Thomas Flat-Polar Quartic projection is based on this projection.

PROJECTION PARAMETERS
Supported on a sphere only.

Projection Engine: ArcMap, ArcCatalog, ArcSDE, MapObjects 2.x, ArcView Projection Utility
Central Meridian
False Easting
False Northing
Rectified Skewed Orthomorphic

DESCRIPTION
Also called RSO.

This projection is provided with two options for the national coordinate systems of Malaysia and Brunei and is similar to the Oblique Mercator.

PROJECTION METHOD
Oblique cylindrical projection. A line of true scale is drawn at an angle to the central meridian.

LINE OF CONTACT
A single, oblique, great-circle line.

LINEAR GRATICULES
Two meridians 180 degrees apart.

PROPERTIES
Shape
Conformal. Local shapes are true.

Area
Increases with distance from the center line.

Direction
Local angles are correct.

Distance
True along the chosen central line.

LIMITATIONS
Its use is limited to those areas of Brunei and Malaysia for which the projection was developed.

USES AND APPLICATIONS
Used for the national projections of Malaysia and Brunei.

PROJECTION PARAMETERS
ArcInfo:Arc,ARC PLOT,ARC EDIT, ArcToolbox;
PC Arc/INFO;ArcCAD
:PROJECTION RSO
:PARAMETERS
Enter: Brunei (1) or Malaysia (2):

ArcView GIS
Use ‘Malaysia and Singapore’ for type 1 or ‘Brunei’ for type 2. Parameters are set by the software.
DESCRIPTION
Also called Orthophanic.
A compromise projection used for world maps.

PROJECTION METHOD
Pseudocylindrical. Meridians are equally spaced and resemble elliptical arcs, concave toward the central meridian. The central meridian is a straight line 0.51 times the length of the equator. Parallels are equally spaced straight lines between 38° N and S; spacing decreases beyond these limits. The poles are 0.53 times the length of the equator. The projection is based upon tabular coordinates instead of mathematical formulas.

LINEAR GRATICULES
All parallels and the central meridian.

PROPERTIES
Shape
Shape distortion is very low within 45 degrees of the origin and along the equator.

Area
Distortion is very low within 45 degrees of the origin and along the equator.

Direction
Generally distorted.

Distance
Generally, scale is made true along latitudes 38° N and S. Scale is constant along any given latitude and for the latitude of the opposite sign.

LIMITATIONS
Neither conformal nor equal area. Useful only for world maps.

USES AND APPLICATIONS
Developed for use in general and thematic world maps.

Used by Rand McNally since the 1960s and by the National Geographic Society since 1988 for general and thematic world maps.

PROJECTION PARAMETERS
ArcInfo: ARC, ARC PLOT, ARC EDIT, ArcToolbox; PC ARC/INFO; ArcCAD
:PROJECTION ROBINSON
:PARAMETERS
Longitude of central meridian:
False easting (meters):
False northing (meters):

Projection Engine: ArcMap, ArcCatalog, ArcSDE, MapObjects 2.x, ArcView Projection Utility
Central Meridian
False Easting
False Northing

ArcView GIS
This projection is supported on a sphere only.
Central Meridian:
Simple Conic

The central meridian is 60° W. The first and second standard parallels are 5° S and 42° S. The latitude of origin is 32° S.

DESCRIPTION

Also called Equidistant Conic, or Conic.

This conic projection can be based on one or two standard parallels. As the name implies, all circular parallels are an equal distance from each other, spaced evenly along the meridians. This is true whether one or two parallels are used.

PROJECTION METHOD

Cone is tangential if only one standard parallel is specified and secant for two standard parallels. Graticules are evenly spaced. The space between each meridian is equal, as is the space between each of the concentric arcs that describe the lines of latitude. The poles are represented as arcs rather than points.

If the pole is given as the single standard parallel, the cone becomes a plane and the resulting projection is the same as a polar Azimuthal Equidistant.

If two standard parallels are placed symmetrically north and south of the equator, the resulting projection is the same as Equirectangular, and the Equirectangular projection must be used.

Use Equirectangular if the standard parallel is the equator.

LINES OF CONTACT

Depends on the number of standard parallels.

- Tangential projections (Type 1)—One line, indicated by the standard parallel.
- Secant projections (Type 2)—Two lines, specified as first and second standard parallels.

LINEAR GRATICULES

All meridians.

PROPERTIES

Shape

Local shapes are true along the standard parallels. Distortion is constant along any given parallel. Distortion increases with distance from the standard parallels.

Area

Distortion is constant along any given parallel. Distortion increases with distance from the standard parallels.

Direction

Locally true along the standard parallels.

Distance

True along the meridians and the standard parallels. Scale is constant along any given parallel but changes from parallel to parallel.

LIMITATIONS

Range in latitude should be limited to 30 degrees.

USES AND APPLICATIONS

Regional mapping of mid-latitude areas with a predominantly east-west expanse.

Common for atlas maps of small countries.

Used by the Soviet Union for mapping the entire country.
PROJECTION PARAMETERS

ArcInfo: ARC, ARCPLOT, ARCEDIT, ArcToolbox;
PC ARC/INFO; ArcCAD:

: PROJECTION SIMPLE_CONIC
: PARAMETERS
Number of standard parallels < 1 | 2 >:

Type 1

Longitude of the central meridian (DMS):
Latitude of the origin (DMS):
Latitude of the standard parallel (DMS):

Type 2

Longitude of the central meridian (DMS):
Latitude of the origin (DMS):
Latitude of the 1st standard parallel (DMS):
Latitude of the 2nd standard parallel (DMS):

Projection Engine: ArcMap, ArcCatalog, ArcSDE,
MapObjects 2.x, ArcView Projection Utility

Central Meridian
Standard Parallel 1
Standard Parallel 2
Latitude of Origin
False Easting
False Northing

ArcView GIS

Use Equidistant Conic.
Sinusoidal

Description
Also known as Sanson–Flamsteed.

As a world map, this projection maintains equal area despite conformal distortion. Alternative formats reduce the distortion along outer meridians by interrupting the continuity of the projection over the oceans and by centering the continents around their own central meridians, or vice versa.

Projection Method
A pseudocylindrical projection where all parallels and the central meridian are straight. Other meridians are sinusoidal curves.

Linear Graticules
All lines of latitude and the central meridian.

Properties

Shape
Free of distortion along the central meridian and the equator. Smaller regions using the interrupted form exhibit less distortion than the uninterrupted sinusoidal projection of the world.

Area
Areas are represented accurately.

Direction
Local angles are correct along the central meridian and the equator but distorted elsewhere.

Distance
The scale along all parallels and the central meridian

Limitations
Distortion is reduced when used for a single land mass, rather than the entire globe. This is especially true for regions near the equator.

Uses and Applications
World maps illustrating area characteristics, especially if interrupted.

Continental maps of South America, Africa, and occasionally others, where each land mass has its own central meridian.

Projection Parameters

ArcInfo: ARC, ARCPL T, ARCE DIT, ArcTo olbox;
PC ARC/INFO; ArcCAD
Supported on a sphere only.

:PROJECT ION SINUSOIDAL
:PARAMETERS
Radius of the sphere of reference:
Longitude of central meridian:
False easting (meters):
False northing (meters):

Projection Engine: ArcMap, ArcCatalog, ArcSDE, MapObjects 2.x, ArcView Projection Utility
Central meridian
False Easting
False Northing

ArcView GIS
This projection is supported on a sphere only.

Central Meridian:

The central meridian is 117° E.
Space Oblique Mercator

DESCRIPTION
This projection is nearly conformal and has little scale distortion within the sensing range of an orbiting mapping satellite such as Landsat. This is the first projection to incorporate the earth’s rotation with respect to the orbiting satellite. For Landsat 1, 2, and 3, the path range is from 1 to 251. For Landsat 4 and 5, the path range is from 1 to 233.

PROJECTION METHOD
Modified cylindrical, for which the central line is curved and defined by the ground track of the orbit of the satellite.

LINE OF TANGENCY
Conceptual.

LINEAR GRATICULES
None.

PROPERTIES

Shape
Shape is correct within a few parts per million for the sensing range of the satellite.

Area
Varies by less than 0.02 percent for the sensing range of the satellite.

Direction
Minimal distortion within the sensing range.

Distance
Scale is true along the ground track and varies approximately 0.01 percent within the sensing range.

LIMITATIONS
Plots for adjacent paths do not match without transformation.

USES AND APPLICATIONS
Specifically designed to minimize distortion within the sensing range of a mapping satellite as it orbits the rotating earth.

Used for georectification of, and continuous mapping from, satellite imagery.

Standard format for data from Landsat 4 and 5.

PROJECTION PARAMETERS
ArcInfo:ARC,ARC PLOT,ARC EDIT, ArcToolbox; PC ARC/INFO; ArcCAD

:PROJECTION SPACE_OBLIQUE_MERCATOR
:PARAMETERS
Landsat vehicle ID (1,2,3,4,5):
Orbital path number (1-233):
STATE PLANE COORDINATE SYSTEM

DESCRIPTION
Also known as SPCS, SPC, State Plane, State.

The State Plane Coordinate System is not a projection. It is a coordinate system that divides the 50 states of the United States, Puerto Rico, and the U.S. Virgin Islands into over 120 numbered sections, referred to as zones. Each zone has an assigned code number that defines the projection parameters for the region.

PROJECTION METHOD
Projection may be cylindrical or conic. See Lambert Conformal Conic, Transverse Mercator, and Hotine Oblique Mercator for methodology and properties.

WHY USE STATE PLANE
Governmental organizations or groups who do work with them primarily use the State Plane Coordinate System. Most often, these are county or municipal databases. The advantage of using SPCS is that your data is in a common coordinate system with other databases covering the same area.

WHAT IS STATE PLANE
The SPCS is a coordinate system designed for mapping the United States. It was developed in the 1930s by the U.S. Coast and Geodetic Survey to provide a common reference system to surveyors and mappers. The goal was to design a conformal mapping system for the country with a maximum scale distortion of one part in 10,000, then considered the limit of surveying accuracy.

Three conformal projections were chosen: the Lambert Conformal Conic for states that are longer in the east–west direction, such as Tennessee and Kentucky; the Transverse Mercator projection for states that are longer in the north–south direction, such as Illinois and Vermont; and the Oblique Mercator projection for the panhandle of Alaska, because it lays neither predominantly north nor south, but at an angle.

To maintain an accuracy of one part in 10,000, it was necessary to divide many states into zones. Each zone has its own central meridian or standard parallels to maintain the desired level of accuracy. The boundaries of these zones follow county boundaries. Smaller states such as Connecticut require only one zone, while Alaska is composed of 10 zones and uses all three projections.

This coordinate system is referred to here as the State Plane Coordinate System of 1927 (SPCS 27). It is based upon a network of geodetic control points referred to as the North American Datum of 1927 (NAD 1927 or NAD27).

STATE PLANE AND THE NORTH AMERICAN DATUM
Technological advancements of the last 50 years have led to improvements in the measurement of distances, angles, and the earth’s size and shape. This, combined with moving the origin of the datum from Meades Ranch in Kansas to the earth’s center of mass for compatibility with satellite systems, made it necessary to redefine SPCS 27. Consequently, the coordinates for points are different for SPCS 27 and SPCS 83. There are several reasons for this. For SPCS 83, all State Plane coordinates published by NGS are in metric units, the shape of the spheroid of the earth is slightly different, some states have changed the definition of their zones, and values of longitude and latitude are slightly changed.

Officially, SPCS zones are identified by their National Geodetic Survey (NGS) code. When ESRI implemented the NGS codes, they were part of a proposed Federal Information Processing Standard (FIPS). For that reason, we identify the NGS zones as FIPS zones. That proposed standard was withdrawn but we maintain the FIPS name for continuity.

Sometimes people use an older Bureau of Land Management (BLM) system. The BLM system is outdated and doesn’t include codes for some of the new zones. The values also overlap. You should always use the NGS/FIPS codes.

The following zone changes were made from SPCS 27 to SPCS 83. The zone numbers listed below are FIPS zone numbers. In addition, false easting and northing, or origin, of most zones has changed.

California—California zone 7, SPCS 27 FIPS zone 0407, was eliminated and included in California zone 5, SPCS 83 FIPS zone 0405.

Montana—The three zones for Montana, SPCS 27
FIPS zones 2501, 2502, and 2503, were eliminated and replaced by a single zone, SPCS 83 FIPS zone 2500.

Nebraska—The two zones for Nebraska, SPCS 27 FIPS zones 2601 and 2602, were eliminated and replaced by a single zone, SPCS 83 FIPS zone 2600.

South Carolina—The two zones for South Carolina, SPCS 27 FIPS zones 3901 and 3902, were eliminated and replaced by a single zone, SPCS 83 FIPS zone 3900.

Puerto Rico and Virgin Islands—The two zones for Puerto Rico and the Virgin Islands, SPCS 27 FIPS zones 5201 and 5202, were eliminated and replaced by a single zone, SPCS 83 FIPS zone 5200.

UNIT OF LENGTH
The standard unit of measure for SPCS 27 is the U.S. Survey foot. For SPCS 83, the most common unit of measure is the meter. Those states that support both feet and meters have legislated which feet-to-meters conversion they use. The difference between the two is only two parts in one million, but that can become noticeable when data sets are stored in double precision. The U.S. Survey foot equals 1,200/3,937 m, or 0.3048006096 m.

EXAMPLES OF ZONE DEFINITIONS
Here are two examples of SPCS 83 parameters:

<table>
<thead>
<tr>
<th>State</th>
<th>Alabama East</th>
<th>Tennessee</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZONE</td>
<td>3101</td>
<td>5301</td>
</tr>
<tr>
<td>FIPS zone</td>
<td>0101</td>
<td>4100</td>
</tr>
<tr>
<td>Projection</td>
<td>Transverse</td>
<td>Lambert</td>
</tr>
<tr>
<td>Standard Parallels</td>
<td>35°15'</td>
<td>36°25'</td>
</tr>
<tr>
<td>Central Meridian</td>
<td>-85°50'</td>
<td>-86°00'</td>
</tr>
<tr>
<td>Scale Factor Reduction at Central Meridian</td>
<td>1:25,000 1:15,000</td>
<td></td>
</tr>
<tr>
<td>Latitude of Origin</td>
<td>30°30'</td>
<td>34°20'</td>
</tr>
<tr>
<td>Longitude of Origin</td>
<td>-85°50'</td>
<td>-86°00'</td>
</tr>
<tr>
<td>False Easting</td>
<td>200,000</td>
<td>600,000</td>
</tr>
<tr>
<td>False Northing</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

USES AND APPLICATIONS
Standard USGS 7½- and 15-minute quad sheets.
The central meridian is 0° and the latitude of origin is 90° S.

DESCRIPTION
Of all the azimuthal projections, this is the only one that is conformal.

PROJECTION METHOD
Planar perspective projection, viewed from the point on the globe opposite the point of tangency. Stereographic projects points on a spheroid directly to the plane. See Double Stereographic for a different implementation.

All meridians and parallels are shown as circular arcs or straight lines. Graticular intersections are 90 degrees. In the equatorial aspect, the parallels curve in opposite directions on either side of the equator. In the oblique case, only the parallel with the opposite sign to the central latitude is a straight line; other parallels are concave toward the poles on either side of the straight parallel.

POINT OF CONTACT
A single point anywhere on the globe.

LINEAR GRATICULES
Polar aspect—All meridians.
Equatorial aspect—The central meridian and the Equator.
Oblique aspect—Central meridian and parallel of latitude with the opposite sign of the central latitude.

PROPERTIES
Shape
Conformal. Local shapes are accurate.

Area
True scale at center with distortion increasing with distance.

Direction
Directions are accurate from the center. Local angles are accurate everywhere.

Distance
Scale increases with distance from the center.

LIMITATIONS
Normally limited to one hemisphere. Portions of the outer hemisphere may be shown, but with rapidly increasing distortion.

USES AND APPLICATIONS
The oblique aspect has been used to map circular regions on the moon, Mars, and Mercury.
PROJECTION PARAMETERS

ArcInfo: ARC, ARCPLOT, ARCGIS, ArcToolbox;
PC ARC/INFO; ArcCAD

Type 1 is supported on a sphere only.

:PROJECTION STEREOGRAPHIC
:PARAMETERS
Enter projection type < 1 | 2 >:

Type 1 parameters

Radius of the sphere of reference:
Longitude of center of projection:
Latitude of center of projection:
False easting (meters):
False northing (meters):

Type 2 parameters

Longitude of central meridian:
Latitude of projection's center:
View <EQUATORIAL | NORTHPOLE | SOUTHPOLE>:
Scale factor: (equatorial view)

or

Latitude of standard parallel:
(polar view)

Projection Engine: ArcMap, ArcCatalog, ArcSDE,
MapObjects 2.x, ArcView Projection Utility

Central Meridian
Latitude of Origin
Scale Factor
False Easting
False Northing

ArcView GIS

This projection is supported on a sphere only.

Central Meridian:
Reference Latitude:
TIMES

The central meridian is 0°.

DESCRIPTION
The Times was developed by Moir in 1965 for Bartholomew. It is a modified Gall’s Stereographic, but the Times has curved meridians.

PROJECTION METHOD
Pseudocylindrical. Meridians are equally spaced curves. Parallels are straight lines increasing in separation with distance from the equator.

LINES OF CONTACT
Two lines at 45° N and S.

LINEAR GRATICULES
All parallels and the central meridian.

PROPERTIES

Shape
Moderate distortion.

Area
Increasing distortion with distance from 45° N and S.

Direction
Generally distorted.

Distance
Scale is correct along parallels at 45° N and S.

LIMITATIONS
Useful only for world maps.

USES AND APPLICATIONS
Used by Bartholomew in The Times Atlas for world maps.

PROJECTION PARAMETERS
ArcInfo: ARC, ARCPLOT, ARCEdit, ArcToolbox;
PC ARC/INFO; ArcCAD
Supported on a sphere only.

ArcInfo: ARC, ARCPLOT, ARCEdit, ArcToolbox;
PC ARC/INFO; ArcCAD
Supported on a sphere only.

:PROJECTION TIMES
:PARAMETERS
Radius of sphere of reference:
Longitude of projection center:
False easting:
False northing:
DESCRIPTION

Also known as Gauss–Krüger (see that projection).

Similar to the Mercator except that the cylinder is longitudinal along a meridian instead of the equator. The result is a conformal projection that does not maintain true directions. The central meridian is placed in the center of the region of interest. This centering minimizes distortion of all properties in that region. This projection is best suited for areas that stretch north to south. The State Plane Coordinate System uses this projection for all north–south zones. The UTM and Gauss–Krüger coordinate systems are based on the Transverse Mercator projection.

PROJECTION METHOD

Cylindrical projection with central meridian placed in a particular region.

LINES OF CONTACT

Any single meridian for the tangent projection. For the secant projection, two almost parallel lines equidistant from the central meridian. For UTM, the lines are about 180 km from the central meridian.

LINEAR GRATICULES

The equator and the central meridian.

PROPERTIES

Shape

Conformal. Small shapes are maintained. Larger shapes are increasingly distorted away from the central meridian.

Area

Distortion increases with distance from the central meridian.

Direction

Local angles are accurate everywhere.

Distance

Accurate scale along the central meridian if the scale factor is 1.0. If it is less than 1.0, there are two straight lines with accurate scale equidistant from and on each side of the central meridian.

LIMITATIONS

Data on a spheroid or an ellipsoid cannot be projected beyond 90 degrees from the central meridian. In fact, the extent on a spheroid or ellipsoid should be limited to 15 to 20 degrees on both sides of the central meridian. Beyond that range, data projected to the Transverse Mercator projection may not project back to the same position. Data on a sphere does not have these limitations.

USES AND APPLICATIONS

State Plane Coordinate System, used for predominantly north-south state zones.

USGS 7½-minute quad sheets. Most new USGS maps after 1957 use this projection, which replaced the Polyconic projection.

North America (USGS, central meridian scale factor = 0.926).

UTM and Gauss–Krüger coordinate systems. UTM divides the world into 120 zones six degrees wide. Each zone has a scale factor of 0.9996 and a false easting of 500,000 meters. Zones south of the
equator have a false northing of 10,000,000 meters to ensure that all Y-values are positive. Zone 1 is at 177° W.

The Gauss–Krüger coordinate system is very similar to the UTM coordinate system. Europe is divided into zones six degrees wide with the central meridian of zone 1 equal to 3° E. The parameters are the same as UTM except for the scale factor, which is equal to 1.000 rather than 0.9996. Some places also add the zone number times one million to the 500,000 false easting value. GK zone 5 could have false easting values of 500,000 or 5,500,000 meters.

PROJECTION PARAMETERS

ArcInfo:ARC,ACRPLOT,ARCEDIT,ArcToolbox;	PC ARC/INFO;ArcCAD
:PROJECTION TRANSVERSE	:PARAMETERS
Scale factor at central meridian:	Longitude of central meridian:
Latitude of origin:	False easting (meters):
False northing (meters):	

Projection Engine:ArcMap,ArcCatalog,ArcSDE, MapObjects 2.x,ArcView Projection Utility

Central Meridian

Latitude of Origin

Scale Factor

False Easting

False Northing

ArcView GIS

Central Meridian:

Reference Latitude:

Scale Factor:

False Easting:

False Northing:
Two Point Equidistant

The first point is 117°30' W, 34° N, and the second point is 83° W, 40° N.

DESCRIPTION
This projection shows the true distance from either of two chosen points to any other point on a map.

PROJECTION METHOD
Modified planar.

POINTS OF CONTACT
None.

LINEAR GRATICULES
Normally none.

PROPERTIES

Shape
Minimal distortion in the region of the two chosen points, if they're within 45 degrees of each other. Increasing distortion beyond this region.

Area
Minimal distortion in the region of the two chosen points, if they're within 45 degrees of each other. Increasing distortion beyond this region.

Direction
Varying distortion.

Distance
Correct from either of two chosen points to any other point on the map. Straight line from either point represents the correct great circle length but not the correct great circle path.

LIMITATIONS
Does not represent great circle paths.

USES AND APPLICATIONS
Used by the National Geographic Society for maps of Asia.

Adapted form used by Bell Telephone system for determining the distance used to calculate long distance telephone rates.

PROJECTION PARAMETERS
This projection is supported on a sphere only.

ArcInfo:ARC,ARC PLOT,ARC EDIT,ArcToolbox;
PC ARC/INFO;ArcCAD

:PROJECTION TWO_POINT_EQUIDISTANT
:PARAMETERS
Longitude of point A:
Latitude of point A:
Longitude of point B:
Latitude of point B:

Point A must be west of point B.

Projection Engine:ArcMap,ArcCatalog,ArcSDE,
MapObjects 2.x,ArcView Projection Utility

Longitude of 1st Point
Latitude of 1st Point
Longitude of 2nd Point
Latitude of 2nd Point
False Easting
False Northing
DESCRIPTION
Also known as UPS.

This form of the Polar Stereographic maps areas not included in the UTM Coordinate System, regions north of 84° N and south of 80° S. The projection is equivalent to the polar aspect of the Stereographic projection of the spheroid with specific parameters. The central point is either the North Pole or the South Pole.

PROJECTION METHOD
Approximately (for the spheroid) planar perspective projection, where one pole is viewed from the other pole. Lines of latitude are concentric circles. The distance between circles increases away from the central pole. The origin at the intersection of meridians is assigned a false easting and false northing of 2,000,000 meters.

LINES OF CONTACT
The latitude of true scale, 81°06'52.3" N or S, corresponds to a scale factor of 0.994 at the pole.

LINEAR GRATICULES
All meridians.

PROPERTIES
Shape
Conformal. Accurate representation of local shape.

Area
The farther from the pole, the greater the area scale.

Direction
True direction from the pole. Local angles are correct everywhere.

Distance
In general, the scale increases with distance from the pole. Latitude 81°06'52.3" N or S has true scale. The scale closer to the pole is reduced.

LIMITATIONS
The UPS is normally limited to 84° N in the north polar aspect and 80° S in the south polar aspect.

USES AND APPLICATIONS
Conformal mapping of polar regions.

Used for polar regions of the UTM coordinate system.

PROJECTION PARAMETERS
ArcInfo: ARC, ARCPLOT, ARCEdit, ArcToolbox;
PC ARC/INFO; ArcCAD
:PROJECTION UPS
:PARAMETERS
Pole < NORTHPOLE | SOUTHPOLE >:

Projection Engine: ArcMap, ArcCatalog, ArcSDE, MapObjects 2.x, ArcView Projection Utility
Use the predefined UPS zones or use a polar case of the Stereographic projection.
DESCRIPTION
Also known as UTM. This coordinate system is included for historical reasons.

The Universal Transverse Mercator system is a specialized application of the Transverse Mercator projection. The globe is divided into 120 zones, each spanning six degrees of longitude. Each zone has its own central meridian. Zones 1N and 1S start at -180° W. The limits of each zone are 84° N, 80° S with the division between North and South zones occurring at the equator. The polar regions use the Universal Polar Stereographic coordinate system.

The origin for each zone is its central meridian and the equator. To eliminate negative coordinates, the coordinate system alters the coordinate values at the origin. The value given to the central meridian is the false easting, and the value assigned to the equator is the false northing. A false easting of 500,000 meters is applied. A North zone has a false northing of zero, while a South zone has a false northing of 10,000,000 meters.

PROJECTION METHOD
Cylindrical projection. See Transverse Mercator.

LINES OF CONTACT
Two lines parallel to and approximately 180 km to each side of the central meridian of the UTM zone.

LINEAR GRATICULES
The central meridian and the equator.

PROPERTIES
Shape
Conformal. Accurate representation of small shapes. Minimal distortion of larger shapes within the zone.

Area
Minimal distortion within each UTM zone.

Direction
Local angles are true.

Distance
Scale is constant along the central meridian, but at a scale factor of 0.9996 to reduce lateral distortion within each zone. With this scale factor, lines lying 180 km east and west of and parallel to the central meridian have a scale factor of one.

LIMITATIONS
Designed for a scale error not exceeding 0.1 percent within each zone. This projection spans the globe from 84° N to 80° S. Error and distortion increase for regions that span more than one UTM zone. UTM is not designed for areas that span more than a few zones. See Transverse Mercator for other limitations.

USES AND APPLICATION
United States topographic quadrangles, 1:100,000 scale.

Many countries use local UTM zones based on the official geographic coordinate systems in use.

Large-scale topographic mapping of the former Soviet Union.

Medium-scale maps of regions throughout the world.

PROJECTION PARAMETERS
ArcInfo: ARC, ARCPLOT, ARCEdit, ArcToolbox; PC ARC/INFO; ArcCAD
Zone NOT specified... UTM zone specified...
:PROJECTION UTM :PROJECTION UTM
:PARAMETERS :ZONE ______
Longitude: Latitude:
If a zone is not specified and the latitude is negative, a false northing of 10,000,000 meters is used.

Projection Engine: ArcMap, ArcCatalog, ArcSDE, MapObjects 2.x, ArcView Projection Utility
Use the predefined UTM zones or the Transverse Mercator projection.

ArcView GIS
Use the zones listed under ‘NAD 1927 UTM’ or ‘NAD 1983 UTM’ or select Custom and use Transverse Mercator.
Van Der Grinten I

DESCRIPTION
This projection is similar to the Mercator projection except that it portrays the world as a circle with a curved graticule. The overall effect is that area is distorted less than on the Mercator, and the shape is distorted less than on equal area projections.

PROJECTION METHOD
A compromise projection, not in one of the more traditional classifications.

LINEAR GRATICULES
The equator and the central meridian of the projection.

PROPERTIES

Shape
Distortion increases from the equator to the poles.

Area
Minimal distortion along the equator and extreme distortion in the polar regions.

Direction
Local angles are correct only at the center.

Distance
Scale along the equator is correct.

LIMITATIONS
Can represent the world, but the best presentation is between the 75th parallels of latitude.

USES AND APPLICATIONS
World maps.
Formerly the standard world map projection of the National Geographic Society.

PROJECTION PARAMETERS
Supported on a sphere only.

ArcInfo: ARC,ARC PLOT,ARC EDIT,ArcToolbox;
PC ARC/INFO,ArcCAD

:PROJECTION GRINTEN
:PARAMETERS
Radius of the sphere of reference:
Longitude of central meridian:
False easting (meters):
False northing (meters):

Projection Engine: ArcMap,ArcCatalog,ArcSDE, MapObjects 2.x,ArcView Projection Utility
Central Meridian
False Easting
False Northing
Vertical Near-Side Perspective

DESCRIPTION
This perspective projection views the globe from a finite distance unlike the Orthographic projection. This perspective gives the overall effect of the view from a satellite.

PROJECTION METHOD
Planar perspective projection, viewed from a specified distance above the surface. All aspects are circular or an area less than a full hemisphere.

Polar aspect—Meridians are straight lines radiating from the center, and the lines of latitude are projected as concentric circles that become closer toward the edge of the globe.

Equatorial aspect—The central meridian and the equator are straight lines. The other meridians and parallels are elliptical arcs.

POINT OF CONTACT
A single point located anywhere on the globe.

LINEAR GRATICULES
All aspects—The central meridian of the projection.
Equatorial aspect—The equator.

Polar aspect—All meridians.

PROPERTIES

Shape
Minimal distortion near the center; maximal distortion near the edge.

Area
Minimal distortion near the center; maximal distortion near the edge.

Direction
True direction from the central point.

Distance
The radial scale decreases with distance from the center.

LIMITATIONS
Limited to a view less than 90 degrees from the central point.

USES AND APPLICATIONS
Uses of this projection are aesthetic more than technical. The most commonly used aspect for this purpose is the oblique.

PROJECTION PARAMETERS
Supported on a sphere only.

ArcInfo: ARC, ARC PLOT, ARCEDIT, ArcToolbox;
PC ARC/INFO; ArcCAD

:PROJECTION PERSPECTIVE
:PARAMETERS
Radius of the sphere of reference:
Height of perspective point above sphere:
Longitude of center of projection:
Latitude of center of projection:
False easting (meters):
False northing (meters):

ArcView GIS

Central Meridian
Reference Latitude
Height of Viewpoint

The central meridian is 0° and the latitude of origin is 90° S.
Winkel I

DESCRIPTION
A pseudocylindrical projection used for world maps that averages the coordinates from the Equirectangular (Equidistant Cylindrical) and Sinusoidal projections. Developed by Oswald Winkel in 1914.

PROJECTION METHOD
Pseudocylindrical. Coordinates are the average of the Sinusoidal and Equirectangular projections. Meridians are equally spaced sinusoidal curves curving toward the central meridian. The central meridian is a straight line. Parallels are equally spaced straight lines. The length of the poles and the central meridian depends on the standard parallels. If the standard parallel is the equator, Eckert V results.

LINEAR GRATICULES
The parallels and the central meridian.

PROPERTIES
Shape
Generally distorted.

Area
Generally distorted.

Direction
Generally distorted.

Distance
Generally, scale is made true along latitudes 50°28' N and S.

LIMITATIONS
Neither conformal nor equal area. Useful only for world maps.

USES AND APPLICATIONS
Developed for use in general world maps. If the standard parallels are 50°28' N and S, the total area scale is correct, but local area scales vary.

PROJECTION PARAMETERS
Supported on a sphere only.

Projection Engine: ArcMap, ArcCatalog, ArcSDE, MapObjects 2.x, ArcView Projection Utility

Central Meridian
Standard Parallel 1
Scale Factor
False Easting
False Northing
DESCRIPTION
A pseudocylindrical projection that averages the coordinates from the Equirectangular and Mollweide projections. Developed by Oswald Winkel in 1918.

PROJECTION METHOD
Pseudocylindrical. Coordinates are the average of the Mollweide and Equirectangular projections. Meridians are equally spaced curves, curving toward the central meridian. The central meridian is a straight line. Parallels are equally spaced straight lines. The length of the poles and the central meridian depends on the standard parallels.

LINEAR GRATICULES
The parallels and the central meridian.

PROPERTIES
Shape
Generally distorted.

Area
Generally distorted.

Direction
Generally distorted.

Distance
Generally, scale is made true along the standard latitudes.

LIMITATIONS
Neither conformal nor equal area. Useful only for world maps.

USES AND APPLICATIONS
Developed for use in general world maps.

PROJECTION PARAMETERS
Supported on a sphere only.

Projection Engine: ArcMap, ArcCatalog, ArcSDE, MapObjects 2.x, ArcView Projection Utility
Central Meridian
Standard Parallel 1
Scale Factor
False Easting
False Northing
Winkel Tripel

A compromise projection used for world maps that averages the coordinates from the Equirectangular (Equidistant Cylindrical) and Aitoff projections. Developed by Oswald Winkel in 1921.

DESCRIPTION

Modified azimuthal. Coordinates are the average of the Aitoff and Equirectangular projections. Meridians are equally spaced and concave toward the central meridian. The central meridian is a straight line. Parallels are equally spaced curves, concave toward the poles. The poles are around 0.4 times the length of the equator. The length of the poles depends on the standard parallel chosen.

LINEAR GRATICULES

The equator and the central meridian.

PROPERTIES

Shape

Shape distortion is moderate except in the polar regions along the outer meridians.

Area

Distortion is moderate except in the polar regions along the outer meridians.

Direction

Generally distorted.

Distance

Generally, scale is made true along latitudes 50.467° N and S or 40° N and S. The second case is Bartholomew’s usage.

LIMITATIONS

Neither conformal nor equal area. Useful only for world maps.

USES AND APPLICATIONS

Developed for use in general and thematic world maps.

Used by the National Geographic Society since 1998 for general and thematic world maps.

PROJECTION PARAMETERS

ArcInfo: ARC, ARC PLOT, ARCEdit, ArcToolbox
Supported on a sphere only.

`:PROJECTION WINKEL
:PARAMETERS
Radius of the sphere of reference:
Longitude of central meridian:
Latitude of standard parallel:
False easting (meters):
False northing (meters):`
angular units
The unit of measurement on a sphere or a spheroid; usually degrees. Map projection parameters such as the central meridian and standard parallel are defined in angular units.

azimuth
An angle measured from north. Used to define an oblique cylindrical projection or the angle of a geodesic between two points.

azimuthal projection
A form of projection where the earth is projected onto a conceptual tangent or secant plane. See planar projection.

central meridian
The line of longitude that defines the center and often the x origin of a projected coordinate system.

circle
A geometric shape for which the distance from the center to any point on the edge is equal.

conformal projection
A projection on which all angles at each point are preserved. Also called an orthomorphic projection (Snyder and Voxland, 1989).

conic projection
A projection resulting from the conceptual projection of the earth onto a tangent or secant cone, which is then cut lengthwise and laid flat (Snyder and Voxland, 1989).

cylindrical projection
A projection resulting from the conceptual projection of the earth onto a tangent or secant cylinder, which is then cut lengthwise and laid flat (Snyder and Voxland, 1989).

datum
1. A reference frame defined by a spheroid and the spheroid’s position relative to the center of the earth.
2. A set of control points and a spheroid that define a reference surface.

datum transformation
See geographic transformation.

eccentricity
A measurement of how much an ellipse deviates from a true circle. Measured as the square root of the quantity 1.0 minus the square of the ratio of the semiminor axis to the semimajor axis. The square of the eccentricity, ‘e²’, is commonly used with the semimajor axis, ‘a’, to define a spheroid in map projection equations.

ellipse
A geometric shape equivalent to a circle that is viewed obliquely; a flattened circle.

ellipsoid
When used to represent the earth, the three-dimensional shape obtained by rotating an ellipse about its minor axis. This is an oblate ellipsoid of revolution, also called a spheroid.

ellipticity
The degree to which an ellipse deviates from a true circle. The degree of flattening of an ellipse, measured as 1.0 minus the ratio of the semiminor axis to the semimajor axis.

equal area projection
A projection on which the areas of all regions are shown in the same proportion to their true areas. Shapes may be greatly distorted (Snyder and Voxland, 1989).

Equator
The parallel of reference that defines the origin of latitude values, 0° north or south.

equatorial aspect
A planar projection with its central point located at the equator.
equivalent projection
A projection which maintains scale along one or more lines, or from one or two points to all other points on the map.

false easting
A linear value added to the x-values, usually to ensure that all map coordinates are positive. See false northing.

false northing
A linear value added to the y-values, usually to ensure that all map coordinates are positive. See false easting.

flattening
A measure of how much a spheroid differs from a sphere. The flattening is the ratio of the semimajor axis minus the semiminor axis to the semimajor axis. Known as 'f' and often expressed as a ratio. Example: 1/298.3. Also known as the ellipticity.

Gauss-Krüger
A projected coordinate system used in Europe that divides the area into six degree zones. Very similar to the UTM coordinate system.

geocentric latitude
Defined as the angle between the equatorial plane and a line from a point on the surface to the center of the sphere or spheroid.

geodesic
The shortest distance between two points on the surface of a spheroid. Any two points along a meridian form a geodesic.

geodetic latitude
Defined as the angle formed by the perpendicular to the surface at a point and the equatorial plane. On a spheroid, the perpendicular doesn’t hit the center of the spheroid in the equatorial plane.

geographic coordinate system
A reference system using latitude and longitude to define the locations of points on the surface of a sphere or spheroid.

geographic transformation
A method that converts data between two geographic coordinate systems (datums). Also known as a datum transformation.

graticule
A network of lines representing a selection of the earth’s parallels and meridians (Snyder and Voxland, 1989).

great circle
Any circle on the surface of a sphere formed by the intersection of the surface with a plane passing through the center of the sphere. The shortest path between any two points lies on a great circle and is therefore important to navigation. All meridians and the Equator are great circles on the earth defined as a sphere (Snyder and Voxland, 1989).

Greenwich prime meridian
The prime meridian located in Greenwich, England.

latitude
The angular distance (usually measured in degrees) north or south of the equator. Lines of latitude are also referred to as parallels. See geodetic latitude and geocentric latitude.

latitude of center
The latitude value that defines the center (and sometimes origin) of a projection.

latitude of origin
The latitude value that defines the origin of the y-coordinate values for a projection.

linear units
The unit of measurement on a plane or a projected coordinate system; often meters or feet. Map projection parameters such as the false easting and false northing are defined in linear units.

longitude
The angular distance (usually measured in degrees) east or west of a prime meridian.

longitude of center
The longitude value that defines the center (and sometimes origin) of a projection.
longitude of origin
The longitude value that defines the origin of the x-coordinate values for a projection.

major axis
The longer axis of an ellipse or spheroid.

map projection
A systematic conversion of locations on the world from angular to planar coordinates.

map scale
The ratio of a length on a map to its length on the ground.

meridian
The reference line on the earth's surface formed by the intersection of the surface with a plane passing through both poles. This line is identified by its longitude. Meridians run north-south between the poles.

minor axis
The shorter axis of an ellipse or spheroid.

NAD 1927
North American Datum of 1927. A local datum and geographic coordinate system used in North America. Replaced by NAD 1983. Also known as NAD 1927 or NAD27.

NAD 1983
North American Datum of 1983. A geocentric datum and geographic coordinate system used in North America. Also known as NAD 1927 or NAD83.

oblique aspect
A planar or cylindrical projection with its central point located at some point not on the equator or at the poles.

parallel
A reference line on the earth’s surface that runs east-west around a sphere or spheroid and is parallel to the equator. Latitude lines are parallel circles.

planar projection
A form of projection where the earth is projected onto a conceptual tangent or secant plane. Usually, a planar projection is the same as an azimuthal projection (Snyder and Voxland, 1989).

polar aspect
A planar projection with its central point located at either the North or South Pole.

prime meridian
A meridian of reference that defines the origin of the longitude values, 0° east or west.

projected coordinate system
A reference system that defines the locations of points on a planar surface.

radius
The distance from the center to the outer edge of a circle.

reference ellipsoid
See ellipsoid.

rhumb line
A complex curve on the earth’s surface that crosses every meridian at the same oblique angle; a straight line on the Mercator projection. Also called a loxodrome (Snyder and Voxland, 1989). Meridians and parallels are special cases.

scale factor
A value (usually less than one) that converts a tangent projection to a secant projection. Represented by ‘k₀’ or ‘k’. If a projected coordinate system doesn’t have a scale factor, the standard lines of the projection have a scale of 1.0. Other points on the map have scales greater or lesser than 1.0. If a projected coordinate system has a scale factor, the defining parameters no longer have a scale of 1.0.

secant projection
A form of map projection where the conceptual surface of the projection (cone, cylinder, or plane) cuts through the earth's surface.

semitmajor axis
The equatorial radius of a spheroid. Often known as ‘a’.

semitminor axis
The polar radius of a spheroid. Often known as ‘b’.

sphere
A three-dimensional shape obtained by revolving a circle around its diameter.
spherical coordinate system
A system using positions of latitude and longitude to define the locations of points on the surface of a sphere or spheroid.

spheroid
When used to represent the earth, the three-dimensional shape obtained by rotating an ellipse about its minor axis. This is an oblate ellipsoid of revolution, also called a ellipsoid.

standard line
A line on a sphere or spheroid that has no length compression or expansion after being projected. Commonly, a standard parallel or central meridian.

standard parallel
The line of latitude where the projection surface touches the surface. A tangent conic or cylindrical projection has one standard parallel, while a secant conic or cylindrical projection has two. A standard parallel has no distortion.

State Plane Coordinate System
A projected coordinate system used in the United States that divides each state into one or more zones to minimize distortion caused by the map projection. Also known as SPCS and SPC.

tangent projection
A form of map projection where the conceptual surface of the projection (cone, cylinder, or plane) just touches the earth's surface.

true-direction projection
A form of projection that shows lines with correct azimuths from one or two points.

unit of measure
See angular units or linear units.

UTM
Universal Transverse Mercator. A projected coordinate system that divides the world into 60 north and south zones, six degrees wide.

WGS 1984
World Geodetic System of 1984. A geocentric datum and geographic coordinate system created by the United States military and in worldwide use. Also known as WGS84.
Selected References

